Câu hỏi:

12/11/2024 439

Cho đường tròn \[\left( {O;3{\rm{\;cm}}} \right)\] và điểm \[A \in \left( O \right).\] Đường thẳng \[d\] vuông góc với \[OA\] tại trung điểm của \[OA\] cắt đường tròn \[\left( O \right)\] tại \[B\] và \[C.\] Kết luận nào sau đây đúng nhất?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho đường tròn  ( O ; 3 c m )  và điểm  A ∈ ( O ) .  Đường thẳng  d  vuông góc với  O A  tại trung điểm của  O A  cắt đường tròn  ( O )  tại  B  và  C .  Kết luận nào sau đây đúng nhất? (ảnh 1)

Gọi \[M\] là trung điểm \[OA.\]

⦁ Vì đường thẳng \[d\] vuông góc với \[OA\] tại trung điểm \[M\] của \[OA\] nên đường thẳng \[d\] là đường trung trực của đoạn \[OA.\]

Do đó đường thẳng \[d\] là trục đối xứng của đoạn \[OA.\] Vì vậy phương án A đúng.

⦁ Xét \[\Delta OBM\] và \[\Delta ABM,\] có:

\[\widehat {BMO} = \widehat {BMA} = 90^\circ ;\] \[BM\] là cạnh chung; \[OM = AM\] (do \[M\] là trung điểm \[OA\])

Do đó \[\Delta OBM = \Delta ABM\] (c.g.c)

Suy ra \[OB = AB\] (cặp cạnh tương ứng)

Mà tam giác \[OAB\] cân tại \(O\) (do \[OA = OB)\] nên tam giác \[OAB\] đều. Vì vậy phương án B đúng.

⦁ Ta có \[OA = OB = 3{\rm{\;(cm)}}\]. Vì \[M\] là trung điểm \[OA\] nên \[OM = \frac{{OA}}{2} = \frac{3}{2}{\rm{\;(cm)}}{\rm{.}}\]

Áp dụng định lí Pythagore cho tam giác \[OBM\] vuông tại \[M,\] ta được: \[O{B^2} = B{M^2} + O{M^2}\]

Suy ra \[B{M^2} = O{B^2} - O{M^2} = {3^2} - {\left( {\frac{3}{2}} \right)^2} = \frac{{27}}{4}\]. Do đó \[BM = \frac{{3\sqrt 3 }}{2}{\rm{\;(cm)}}{\rm{.}}\]

Vì đường thẳng \[OA\] là trục đối xứng của \[\left( O \right)\] nên điểm đối xứng với điểm \[B\] qua đường thẳng \[OA\] phải vừa thuộc \[\left( O \right)\], vừa thuộc đường vuông góc hạ từ \[B\] xuống \[OA.\]

Tức là \[M\] là trung điểm của \(BC\) nên \[BC = 2BM = 2 \cdot \frac{{3\sqrt 3 }}{2} = 3\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\] Vì vậy phương án C đúng.

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \[\left( {O;R} \right)\] và ba điểm \[A,B,C\] thuộc đường tròn đó sao cho \[\Delta ABC\] cân tại \[A.\] Giả sử \[BC = 6{\rm{\;cm}},\] đường cao \[AM\] của \[\Delta ABC\] bằng \[4{\rm{\;cm}}.\] Gọi \[B'\] là điểm đối xứng với \[B\] qua \[O.\] Kẻ \[AH \bot CB'\] tại \[H.\] Khi đó chu vi tứ giác \[AHCM\] bằng

Xem đáp án » 12/11/2024 543

Câu 2:

Cho \[\Delta ABC\] cân tại \[A,\] vẽ hai đường cao \[BE\] và \[CF\] cắt nhau tại \[H.\] Gọi \[I,K\] lần lượt là hai điểm trên \[BH,CH\] sao cho \[HI = HE,HK = HF.\] Gọi \[M\] là trung điểm của \[AH.\] Khi đó \[\Delta ABC\] cần điều kiện gì để điểm \[M\] thuộc đường tròn đi qua bốn điểm \[E,F,I,K?\]

Xem đáp án » 12/11/2024 259

Câu 3:

Cho đường tròn \[\left( {O;R} \right).\] Đường thẳng \[d\] đi qua tâm \[O,\] cắt đường tròn \[\left( O \right)\] tại hai điểm \[A,C.\] Đường thẳng \[d'\] (khác \[d\]) đi qua tâm \[O,\] cắt đường tròn \[\left( O \right)\] tại hai điểm \[B,D.\] Khi đó tứ giác \[ABCD\] là hình gì?

Xem đáp án » 12/11/2024 232

Câu 4:

III. Vận dụng

Cho tam giác \[ABC\] cân tại \[A\] có \[\widehat {A\,} = 120^\circ .\] Biết rằng các đỉnh của tam giác nằm trên đường tròn tâm \[O\] bán kính \[4{\rm{\;cm}}.\] Khi đó diện tích tam giác \[ABC\] bằng

Xem đáp án » 12/11/2024 228

Câu 5:

Cho hình vuông \[ABCD\] cạnh \[a.\] Khẳng định nào sau đây đúng?

Xem đáp án » 12/11/2024 113

Câu 6:

II. Thông hiểu

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 12{\rm{\;cm}}.\) Bán kính đường tròn đi qua ba đỉnh của tam giác đó bằng

Xem đáp án » 12/11/2024 84

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store