Câu hỏi:
12/11/2024 1,094Cho đường tròn \[\left( {O;R} \right)\] và ba điểm \[A,B,C\] thuộc đường tròn đó sao cho \[\Delta ABC\] cân tại \[A.\] Giả sử \[BC = 6{\rm{\;cm}},\] đường cao \[AM\] của \[\Delta ABC\] bằng \[4{\rm{\;cm}}.\] Gọi \[B'\] là điểm đối xứng với \[B\] qua \[O.\] Kẻ \[AH \bot CB'\] tại \[H.\] Khi đó chu vi tứ giác \[AHCM\] bằng
Quảng cáo
Trả lời:
Đáp án đúng là: D
Vì \[B'\] là điểm đối xứng với \[B\] qua \[O\] và \(B \in \left( O \right)\) nên \[B' \in \left( O \right).\]
Suy ra \[OB = OB' = R\] và \(BB' = 2R.\)
Mà \[C \in \left( O \right)\] nên \[R = OC = OB = OB' = \frac{{BB'}}{2}.\]
Tam giác \[BB'C\] có \[OC\] là đường trung tuyến ứng với cạnh \(BB'\) và \[OC = \frac{{BB'}}{2}\] nên tam giác \[BB'C\] vuông tại \[C.\]
Tứ giác \[AHCM,\] có: \[\widehat {AMC} = \widehat {AHC} = \widehat {HCM} = 90^\circ \] nên tứ giác \[AHCM\] là hình chữ nhật.
Tam giác \[ABC\] cân tại \[A\] có \[AM\] là đường cao nên \[AM\] cũng là đường trung tuyến của tam giác. Do đó \[M\] là trung điểm \[BC.\] Vì vậy \[MC = \frac{{BC}}{2} = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\]
Vậy chu vi hình chữ nhật \[AHCM\] bằng \[2 \cdot \left( {AM + MC} \right) = 2 \cdot \left( {4 + 3} \right) = 14{\rm{\;(cm)}}{\rm{.}}\]
Do đó ta chọn phương án D.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Gọi \[M\] là trung điểm \[OA.\]
⦁ Vì đường thẳng \[d\] vuông góc với \[OA\] tại trung điểm \[M\] của \[OA\] nên đường thẳng \[d\] là đường trung trực của đoạn \[OA.\]
Do đó đường thẳng \[d\] là trục đối xứng của đoạn \[OA.\] Vì vậy phương án A đúng.
⦁ Xét \[\Delta OBM\] và \[\Delta ABM,\] có:
\[\widehat {BMO} = \widehat {BMA} = 90^\circ ;\] \[BM\] là cạnh chung; \[OM = AM\] (do \[M\] là trung điểm \[OA\])
Do đó \[\Delta OBM = \Delta ABM\] (c.g.c)
Suy ra \[OB = AB\] (cặp cạnh tương ứng)
Mà tam giác \[OAB\] cân tại \(O\) (do \[OA = OB)\] nên tam giác \[OAB\] đều. Vì vậy phương án B đúng.
⦁ Ta có \[OA = OB = 3{\rm{\;(cm)}}\]. Vì \[M\] là trung điểm \[OA\] nên \[OM = \frac{{OA}}{2} = \frac{3}{2}{\rm{\;(cm)}}{\rm{.}}\]
Áp dụng định lí Pythagore cho tam giác \[OBM\] vuông tại \[M,\] ta được: \[O{B^2} = B{M^2} + O{M^2}\]
Suy ra \[B{M^2} = O{B^2} - O{M^2} = {3^2} - {\left( {\frac{3}{2}} \right)^2} = \frac{{27}}{4}\]. Do đó \[BM = \frac{{3\sqrt 3 }}{2}{\rm{\;(cm)}}{\rm{.}}\]
Vì đường thẳng \[OA\] là trục đối xứng của \[\left( O \right)\] nên điểm đối xứng với điểm \[B\] qua đường thẳng \[OA\] phải vừa thuộc \[\left( O \right)\], vừa thuộc đường vuông góc hạ từ \[B\] xuống \[OA.\]
Tức là \[M\] là trung điểm của \(BC\) nên \[BC = 2BM = 2 \cdot \frac{{3\sqrt 3 }}{2} = 3\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\] Vì vậy phương án C đúng.
Vậy ta chọn phương án D.
Lời giải
Đáp án đúng là: B
Vì đường thẳng \[d\] đi qua tâm \[O,\] cắt đường tròn \[\left( {O;R} \right)\] tại hai điểm \[A,C\] nên \[OA = OC = R\].
Chứng minh tương tự, ta được \[OB = OD = R\].
Do đó tứ giác \[ABCD\] có hai đường chéo \(AC\) và \(BD\) cắt nhau tại trung điểm \(O\) của mỗi đường nên là hình bình hành.
Mà \[AC = BD = 2R\] nên tứ giác \[ABCD\] là hình chữ nhật.
Do đó ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.