Câu hỏi:

12/11/2024 553

Cho \[\Delta ABC\] cân tại \[A,\] vẽ hai đường cao \[BE\] và \[CF\] cắt nhau tại \[H.\] Gọi \[I,K\] lần lượt là hai điểm trên \[BH,CH\] sao cho \[HI = HE,HK = HF.\] Gọi \[M\] là trung điểm của \[AH.\] Khi đó \[\Delta ABC\] cần điều kiện gì để điểm \[M\] thuộc đường tròn đi qua bốn điểm \[E,F,I,K?\]

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho  Δ A B C  cân tại  A ,  vẽ hai đường cao  B E  và  C F  cắt nhau tại  H .  Gọi  I , K  lần lượt là hai điểm trên  B H , C H  sao cho  H I = H E , H K = H F .  Gọi  M  là trung điểm của  A H .  Khi đó  Δ A B C  cần điều kiện gì để điểm  M  thuộc đường tròn đi qua bốn điểm  E , F , I , K ? (ảnh 1)

Xét \[\Delta ABC\] cân tại \[A\] có hai đường cao \[BE\] và \[CF\] cắt nhau tại \[H\] nên \[H\] là trực tâm của \[\Delta ABC.\]

Khi đó \[AH\] là đường cao thứ ba của \[\Delta ABC.\]

Mà \[\Delta ABC\] cân tại \[A\] nên đường cao \[AH\] cũng là đường phân giác của \[\Delta ABC.\]

Xét \[\Delta AFH\] và \[\Delta AEH,\] có:

\[\widehat {AFH} = \widehat {AEH} = 90^\circ ;\]

\[AH\] là cạnh chung;

\[\widehat {FAH} = \widehat {EAH}\] (do \[AH\] là đường phân giác của \[\widehat {FAE}\]).

Do đó \[\Delta AFH = \Delta AEH\] (cạnh huyền – góc nhọn)

Suy ra \[HF = HE\] (cặp cạnh tương ứng).

Mà \[HI = HE,\,\,HK = HF\] nên \[HE = HI = HF = HK.\]

Vậy bốn điểm \[E,F,I,K\] cùng nằm trên đường tròn tâm \[H\] bán kính \[HE.\]

Tam giác \[AEH\] vuông tại \[E\] có \[EM\] là đường trung tuyến ứng với cạnh huyền \(AH\) nên \(EM = MA = MH = \frac{1}{2}AH\).

Do đó tam giác \[HME\] cân tại \[M.\]

Để điểm \[M\] thuộc đường tròn đi qua bốn điểm \[E,F,I,K\] thì \[HM = HE.\]

Mà tam giác \[HME\] cân tại \[M\] nên lúc này, tam giác \[HME\] là tam giác đều.

Suy ra \[\widehat {MHE} = 60^\circ .\]

Tam giác \[AEH\] vuông tại \[E\] có \[\widehat {AHE} + \widehat {HAE} = 90^\circ \]

Suy ra \[\widehat {HAE} = 90^\circ - \widehat {AHE} = 90^\circ - 60^\circ = 30^\circ .\]

Lại có \[AH\] là đường phân giác của \[\Delta ABC\] nên \[\widehat {BAC} = 2\widehat {HAE} = 2 \cdot 30^\circ = 60^\circ .\]

Khi này, \[\Delta ABC\] cân tại \[A\] có \[\widehat {BAC} = 60^\circ \] nên \[\Delta ABC\] là tam giác đều.

Vậy \[\Delta ABC\] đều thì điểm \[M\] thuộc đường tròn đi qua bốn điểm \[E,F,I,K.\]

Do đó ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \[\left( {O;3{\rm{\;cm}}} \right)\] và điểm \[A \in \left( O \right).\] Đường thẳng \[d\] vuông góc với \[OA\] tại trung điểm của \[OA\] cắt đường tròn \[\left( O \right)\] tại \[B\] và \[C.\] Kết luận nào sau đây đúng nhất?

Xem đáp án » 12/11/2024 938

Câu 2:

Cho đường tròn \[\left( {O;R} \right)\] và ba điểm \[A,B,C\] thuộc đường tròn đó sao cho \[\Delta ABC\] cân tại \[A.\] Giả sử \[BC = 6{\rm{\;cm}},\] đường cao \[AM\] của \[\Delta ABC\] bằng \[4{\rm{\;cm}}.\] Gọi \[B'\] là điểm đối xứng với \[B\] qua \[O.\] Kẻ \[AH \bot CB'\] tại \[H.\] Khi đó chu vi tứ giác \[AHCM\] bằng

Xem đáp án » 12/11/2024 748

Câu 3:

Cho đường tròn \[\left( {O;R} \right).\] Đường thẳng \[d\] đi qua tâm \[O,\] cắt đường tròn \[\left( O \right)\] tại hai điểm \[A,C.\] Đường thẳng \[d'\] (khác \[d\]) đi qua tâm \[O,\] cắt đường tròn \[\left( O \right)\] tại hai điểm \[B,D.\] Khi đó tứ giác \[ABCD\] là hình gì?

Xem đáp án » 12/11/2024 451

Câu 4:

III. Vận dụng

Cho tam giác \[ABC\] cân tại \[A\] có \[\widehat {A\,} = 120^\circ .\] Biết rằng các đỉnh của tam giác nằm trên đường tròn tâm \[O\] bán kính \[4{\rm{\;cm}}.\] Khi đó diện tích tam giác \[ABC\] bằng

Xem đáp án » 12/11/2024 440

Câu 5:

Khẳng định nào sau đây là đúng khi nói về trục đối xứng của đường tròn?

Xem đáp án » 12/11/2024 297

Câu 6:

II. Thông hiểu

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 12{\rm{\;cm}}.\) Bán kính đường tròn đi qua ba đỉnh của tam giác đó bằng

Xem đáp án » 12/11/2024 239

Bình luận


Bình luận