Câu hỏi:

12/11/2024 1,022

Cho \[\Delta ABC\] cân tại \[A,\] vẽ hai đường cao \[BE\] và \[CF\] cắt nhau tại \[H.\] Gọi \[I,K\] lần lượt là hai điểm trên \[BH,CH\] sao cho \[HI = HE,HK = HF.\] Gọi \[M\] là trung điểm của \[AH.\] Khi đó \[\Delta ABC\] cần điều kiện gì để điểm \[M\] thuộc đường tròn đi qua bốn điểm \[E,F,I,K?\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho  Δ A B C  cân tại  A ,  vẽ hai đường cao  B E  và  C F  cắt nhau tại  H .  Gọi  I , K  lần lượt là hai điểm trên  B H , C H  sao cho  H I = H E , H K = H F .  Gọi  M  là trung điểm của  A H .  Khi đó  Δ A B C  cần điều kiện gì để điểm  M  thuộc đường tròn đi qua bốn điểm  E , F , I , K ? (ảnh 1)

Xét \[\Delta ABC\] cân tại \[A\] có hai đường cao \[BE\] và \[CF\] cắt nhau tại \[H\] nên \[H\] là trực tâm của \[\Delta ABC.\]

Khi đó \[AH\] là đường cao thứ ba của \[\Delta ABC.\]

Mà \[\Delta ABC\] cân tại \[A\] nên đường cao \[AH\] cũng là đường phân giác của \[\Delta ABC.\]

Xét \[\Delta AFH\] và \[\Delta AEH,\] có:

\[\widehat {AFH} = \widehat {AEH} = 90^\circ ;\]

\[AH\] là cạnh chung;

\[\widehat {FAH} = \widehat {EAH}\] (do \[AH\] là đường phân giác của \[\widehat {FAE}\]).

Do đó \[\Delta AFH = \Delta AEH\] (cạnh huyền – góc nhọn)

Suy ra \[HF = HE\] (cặp cạnh tương ứng).

Mà \[HI = HE,\,\,HK = HF\] nên \[HE = HI = HF = HK.\]

Vậy bốn điểm \[E,F,I,K\] cùng nằm trên đường tròn tâm \[H\] bán kính \[HE.\]

Tam giác \[AEH\] vuông tại \[E\] có \[EM\] là đường trung tuyến ứng với cạnh huyền \(AH\) nên \(EM = MA = MH = \frac{1}{2}AH\).

Do đó tam giác \[HME\] cân tại \[M.\]

Để điểm \[M\] thuộc đường tròn đi qua bốn điểm \[E,F,I,K\] thì \[HM = HE.\]

Mà tam giác \[HME\] cân tại \[M\] nên lúc này, tam giác \[HME\] là tam giác đều.

Suy ra \[\widehat {MHE} = 60^\circ .\]

Tam giác \[AEH\] vuông tại \[E\] có \[\widehat {AHE} + \widehat {HAE} = 90^\circ \]

Suy ra \[\widehat {HAE} = 90^\circ - \widehat {AHE} = 90^\circ - 60^\circ = 30^\circ .\]

Lại có \[AH\] là đường phân giác của \[\Delta ABC\] nên \[\widehat {BAC} = 2\widehat {HAE} = 2 \cdot 30^\circ = 60^\circ .\]

Khi này, \[\Delta ABC\] cân tại \[A\] có \[\widehat {BAC} = 60^\circ \] nên \[\Delta ABC\] là tam giác đều.

Vậy \[\Delta ABC\] đều thì điểm \[M\] thuộc đường tròn đi qua bốn điểm \[E,F,I,K.\]

Do đó ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho đường tròn  ( O ; 3 c m )  và điểm  A ∈ ( O ) .  Đường thẳng  d  vuông góc với  O A  tại trung điểm của  O A  cắt đường tròn  ( O )  tại  B  và  C .  Kết luận nào sau đây đúng nhất? (ảnh 1)

Gọi \[M\] là trung điểm \[OA.\]

⦁ Vì đường thẳng \[d\] vuông góc với \[OA\] tại trung điểm \[M\] của \[OA\] nên đường thẳng \[d\] là đường trung trực của đoạn \[OA.\]

Do đó đường thẳng \[d\] là trục đối xứng của đoạn \[OA.\] Vì vậy phương án A đúng.

⦁ Xét \[\Delta OBM\] và \[\Delta ABM,\] có:

\[\widehat {BMO} = \widehat {BMA} = 90^\circ ;\] \[BM\] là cạnh chung; \[OM = AM\] (do \[M\] là trung điểm \[OA\])

Do đó \[\Delta OBM = \Delta ABM\] (c.g.c)

Suy ra \[OB = AB\] (cặp cạnh tương ứng)

Mà tam giác \[OAB\] cân tại \(O\) (do \[OA = OB)\] nên tam giác \[OAB\] đều. Vì vậy phương án B đúng.

⦁ Ta có \[OA = OB = 3{\rm{\;(cm)}}\]. Vì \[M\] là trung điểm \[OA\] nên \[OM = \frac{{OA}}{2} = \frac{3}{2}{\rm{\;(cm)}}{\rm{.}}\]

Áp dụng định lí Pythagore cho tam giác \[OBM\] vuông tại \[M,\] ta được: \[O{B^2} = B{M^2} + O{M^2}\]

Suy ra \[B{M^2} = O{B^2} - O{M^2} = {3^2} - {\left( {\frac{3}{2}} \right)^2} = \frac{{27}}{4}\]. Do đó \[BM = \frac{{3\sqrt 3 }}{2}{\rm{\;(cm)}}{\rm{.}}\]

Vì đường thẳng \[OA\] là trục đối xứng của \[\left( O \right)\] nên điểm đối xứng với điểm \[B\] qua đường thẳng \[OA\] phải vừa thuộc \[\left( O \right)\], vừa thuộc đường vuông góc hạ từ \[B\] xuống \[OA.\]

Tức là \[M\] là trung điểm của \(BC\) nên \[BC = 2BM = 2 \cdot \frac{{3\sqrt 3 }}{2} = 3\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\] Vì vậy phương án C đúng.

Vậy ta chọn phương án D.

Lời giải

Đáp án đúng là: B

Cho đường tròn  ( O ; R ) .  Đường thẳng  d  đi qua tâm  O ,  cắt đường tròn  ( O )  tại hai điểm  A , C .  Đường thẳng  d ′  (khác  d ) đi qua tâm  O ,  cắt đường tròn  ( O )  tại hai điểm  B , D .  Khi đó tứ giác  A B C D  là hình gì? (ảnh 1)

Vì đường thẳng \[d\] đi qua tâm \[O,\] cắt đường tròn \[\left( {O;R} \right)\] tại hai điểm \[A,C\] nên \[OA = OC = R\].

Chứng minh tương tự, ta được \[OB = OD = R\].

Do đó tứ giác \[ABCD\] có hai đường chéo \(AC\) và \(BD\) cắt nhau tại trung điểm \(O\) của mỗi đường nên là hình bình hành.

Mà \[AC = BD = 2R\] nên tứ giác \[ABCD\] là hình chữ nhật.

Do đó ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP