Câu hỏi:

12/11/2024 808

III. Vận dụng

Cho tam giác \[ABC\] cân tại \[A\] có \[\widehat {A\,} = 120^\circ .\] Biết rằng các đỉnh của tam giác nằm trên đường tròn tâm \[O\] bán kính \[4{\rm{\;cm}}.\] Khi đó diện tích tam giác \[ABC\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho tam giác  A B C  cân tại  A  có  ˆ A = 120 ∘ .  Biết rằng các đỉnh của tam giác nằm trên đường tròn tâm  O  bán kính  4 c m .  Khi đó diện tích tam giác  A B C  bằng (ảnh 1)

Kẻ \[AH \bot BC\] tại \[H.\]

Tam giác \[ABC\] cân tại \[A\] có \[AH\] là đường cao nên \[AH\] cũng là đường trung trực của đoạn \[BC.\]

Do đó \[B,C\] đối xứng với nhau qua \[AH.\]

Mà \[B,C \in \left( O \right)\], suy ra đường thẳng \[AH\] đi qua \[O.\]

Tam giác \[ABC\] cân tại \[A\] có \[AH\] là đường cao nên \[AH\] cũng là đường phân giác của tam giác \[ABC.\] Do đó \[\widehat {OAC} = \frac{{\widehat {BAC}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]

Xét tam giác \[OAC\] cân tại \[O\] (do \[OC = OA = R = 4{\rm{\;cm}})\] có \[\widehat {OAC} = 60^\circ \] nên tam giác \[OAC\] đều.

Do đó \[AC = OC = OA = R = 4{\rm{\;cm}}.\]

Xét \(\Delta ACH\) vuông tại \(H\) ta có:

⦁ \[AH = AC \cdot \cos \widehat {OAC} = 4 \cdot \cos 60^\circ = 2{\rm{\;(cm);}}\]

⦁ \[CH = AC \cdot \sin \widehat {OAC} = 4 \cdot \sin 60^\circ = 2\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\]

Vì \[H\] là trung điểm \[BC\] (do \[B,\,\,C\] đối xứng với nhau qua \[AH)\] nên \[BC = 2 \cdot HC = 2 \cdot 2\sqrt 3 = 4\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\]

Vậy \[{S_{\Delta ABC}} = \frac{1}{2} \cdot AH \cdot BC = \frac{1}{2} \cdot 2 \cdot 4\sqrt 3 = 4\sqrt 3 {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Do đó ta chọn phương án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho đường tròn  ( O ; 3 c m )  và điểm  A ∈ ( O ) .  Đường thẳng  d  vuông góc với  O A  tại trung điểm của  O A  cắt đường tròn  ( O )  tại  B  và  C .  Kết luận nào sau đây đúng nhất? (ảnh 1)

Gọi \[M\] là trung điểm \[OA.\]

⦁ Vì đường thẳng \[d\] vuông góc với \[OA\] tại trung điểm \[M\] của \[OA\] nên đường thẳng \[d\] là đường trung trực của đoạn \[OA.\]

Do đó đường thẳng \[d\] là trục đối xứng của đoạn \[OA.\] Vì vậy phương án A đúng.

⦁ Xét \[\Delta OBM\] và \[\Delta ABM,\] có:

\[\widehat {BMO} = \widehat {BMA} = 90^\circ ;\] \[BM\] là cạnh chung; \[OM = AM\] (do \[M\] là trung điểm \[OA\])

Do đó \[\Delta OBM = \Delta ABM\] (c.g.c)

Suy ra \[OB = AB\] (cặp cạnh tương ứng)

Mà tam giác \[OAB\] cân tại \(O\) (do \[OA = OB)\] nên tam giác \[OAB\] đều. Vì vậy phương án B đúng.

⦁ Ta có \[OA = OB = 3{\rm{\;(cm)}}\]. Vì \[M\] là trung điểm \[OA\] nên \[OM = \frac{{OA}}{2} = \frac{3}{2}{\rm{\;(cm)}}{\rm{.}}\]

Áp dụng định lí Pythagore cho tam giác \[OBM\] vuông tại \[M,\] ta được: \[O{B^2} = B{M^2} + O{M^2}\]

Suy ra \[B{M^2} = O{B^2} - O{M^2} = {3^2} - {\left( {\frac{3}{2}} \right)^2} = \frac{{27}}{4}\]. Do đó \[BM = \frac{{3\sqrt 3 }}{2}{\rm{\;(cm)}}{\rm{.}}\]

Vì đường thẳng \[OA\] là trục đối xứng của \[\left( O \right)\] nên điểm đối xứng với điểm \[B\] qua đường thẳng \[OA\] phải vừa thuộc \[\left( O \right)\], vừa thuộc đường vuông góc hạ từ \[B\] xuống \[OA.\]

Tức là \[M\] là trung điểm của \(BC\) nên \[BC = 2BM = 2 \cdot \frac{{3\sqrt 3 }}{2} = 3\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\] Vì vậy phương án C đúng.

Vậy ta chọn phương án D.

Lời giải

Đáp án đúng là: B

Cho đường tròn  ( O ; R ) .  Đường thẳng  d  đi qua tâm  O ,  cắt đường tròn  ( O )  tại hai điểm  A , C .  Đường thẳng  d ′  (khác  d ) đi qua tâm  O ,  cắt đường tròn  ( O )  tại hai điểm  B , D .  Khi đó tứ giác  A B C D  là hình gì? (ảnh 1)

Vì đường thẳng \[d\] đi qua tâm \[O,\] cắt đường tròn \[\left( {O;R} \right)\] tại hai điểm \[A,C\] nên \[OA = OC = R\].

Chứng minh tương tự, ta được \[OB = OD = R\].

Do đó tứ giác \[ABCD\] có hai đường chéo \(AC\) và \(BD\) cắt nhau tại trung điểm \(O\) của mỗi đường nên là hình bình hành.

Mà \[AC = BD = 2R\] nên tứ giác \[ABCD\] là hình chữ nhật.

Do đó ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và một điểm \[K\] bất kì. Biết rằng \[OK = 7{\rm{\;cm}}.\] Khẳng định nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay