Câu hỏi:

12/11/2024 528

Nếu đường thẳng và đường tròn có duy nhất một điểm chung thì

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Đường thẳng và đường tròn gọi là tiếp xúc với nhau nếu chúng có duy nhất một điểm chung.

Do đó ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho đường tròn  ( O ; R )  và điểm  A  nằm ngoài  ( O ) .  Từ  A  kẻ hai tiếp tuyến  A B , A C  với đường tròn  ( O )  (hai điểm  B , C  là các tiếp điểm). Gọi  H  là giao điểm của  O A  và  B C .  Lấy  D  đối xứng với  B  qua  O (ảnh 1)

Ta có \[D\] đối xứng với \[B\] qua \[O.\] Suy ra \[O\] là trung điểm \[BD.\] Do đó \[BD\] là đường kính của đường tròn \[\left( O \right).\]

Tam giác \[BED\] có \[EO\] là đường trung tuyến và \[EO = \frac{{BD}}{2}\] nên tam giác \[BED\] vuông tại \[E.\]

Ta có \[AB\] là tiếp tuyến của đường tròn \[\left( O \right)\] tại \(B\) nên \[AB \bot BD.\]

Xét \[\Delta BED\] và \[\Delta ABD,\] có:

\[\widehat {BED} = \widehat {ABD} = 90^\circ \] và \[\widehat {BDE}\] là góc chung.

Do đó (g.g)

Suy ra \[\frac{{DE}}{{DB}} = \frac{{BE}}{{AB}}\] hay \[\frac{{DE}}{{BE}} = \frac{{DB}}{{AB}}.\]

Vậy ta chọn phương án D.

Lời giải

Đáp án đúng là: A

Hai tiếp tuyến tại  A  và  B  của đường tròn  ( O )  cắt nhau tại  I .  Đường thẳng qua  I  vuông góc với  I A  cắt  O B  tại  K .  Khẳng định nào sau đây là đúng? (ảnh 1)

Vì đường tròn \[\left( O \right)\] có \[IA,IB\] là hai tiếp tuyến cắt nhau tại \[I\] nên \[\widehat {AOI} = \widehat {KOI}.\]

Lại có \[OA\,{\rm{//}}\,KI\] (vì cùng vuông góc với \[AI\]) nên \[\widehat {AOI} = \widehat {KIO}\] (cặp góc so le trong)

Do đó \[\widehat {KOI} = \widehat {KIO}.\]

Vì vậy tam giác \[KOI\] cân tại \[K.\]

Vậy ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP