Câu hỏi:

12/11/2024 197

II. Thông hiểu

Cho \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[3{\rm{\;cm}}.\] Lấy điểm \[I\] trên \[a\] và vẽ đường tròn \[\left( {I;3,5{\rm{\;cm}}} \right).\] Khi đó đường tròn \[\left( I \right)\] với đường thẳng \[b\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho  a  và  b  là hai đường thẳng song song và cách nhau một khoảng bằng  3 c m .  Lấy điểm  I  trên  a  và vẽ đường tròn  ( I ; 3 , 5 c m ) .  Khi đó đường tròn  ( I )  với đường thẳng  b (ảnh 1)

Kẻ \[IH \bot b\] tại \[H.\]

Vì \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[3{\rm{\;cm}}\] và \[I \in a\] nên khoảng cách từ tâm \[I\] đến đường thẳng \[b\] là \[IH = 3{\rm{\;(cm)}}{\rm{.}}\]

Do \[IH = 3{\rm{\;cm}} < R = 3,5{\rm{\;cm}}\] nên đường tròn \[\left( I \right)\] với đường thẳng \[b\] cắt nhau.

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho đường tròn  ( O ; R )  và điểm  A  nằm ngoài  ( O ) .  Từ  A  kẻ hai tiếp tuyến  A B , A C  với đường tròn  ( O )  (hai điểm  B , C  là các tiếp điểm). Gọi  H  là giao điểm của  O A  và  B C .  Lấy  D  đối xứng với  B  qua  O (ảnh 1)

Ta có \[D\] đối xứng với \[B\] qua \[O.\] Suy ra \[O\] là trung điểm \[BD.\] Do đó \[BD\] là đường kính của đường tròn \[\left( O \right).\]

Tam giác \[BED\] có \[EO\] là đường trung tuyến và \[EO = \frac{{BD}}{2}\] nên tam giác \[BED\] vuông tại \[E.\]

Ta có \[AB\] là tiếp tuyến của đường tròn \[\left( O \right)\] tại \(B\) nên \[AB \bot BD.\]

Xét \[\Delta BED\] và \[\Delta ABD,\] có:

\[\widehat {BED} = \widehat {ABD} = 90^\circ \] và \[\widehat {BDE}\] là góc chung.

Do đó (g.g)

Suy ra \[\frac{{DE}}{{DB}} = \frac{{BE}}{{AB}}\] hay \[\frac{{DE}}{{BE}} = \frac{{DB}}{{AB}}.\]

Vậy ta chọn phương án D.

Lời giải

Đáp án đúng là: A

Hai tiếp tuyến tại  A  và  B  của đường tròn  ( O )  cắt nhau tại  I .  Đường thẳng qua  I  vuông góc với  I A  cắt  O B  tại  K .  Khẳng định nào sau đây là đúng? (ảnh 1)

Vì đường tròn \[\left( O \right)\] có \[IA,IB\] là hai tiếp tuyến cắt nhau tại \[I\] nên \[\widehat {AOI} = \widehat {KOI}.\]

Lại có \[OA\,{\rm{//}}\,KI\] (vì cùng vuông góc với \[AI\]) nên \[\widehat {AOI} = \widehat {KIO}\] (cặp góc so le trong)

Do đó \[\widehat {KOI} = \widehat {KIO}.\]

Vì vậy tam giác \[KOI\] cân tại \[K.\]

Vậy ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay