Câu hỏi:
12/11/2024 549Hai tiếp tuyến tại \(B\) và \(C\) của đường tròn \(\left( O \right)\) cắt nhau tại \(A.\) Biết \(OB = 3{\rm{\;cm}},\,\,OA = 5{\rm{\;cm}}{\rm{.}}\) Khẳng định nào sau đây là sai?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Vì \(AB,\,\,AC\) là tiếp tuyến của đường tròn \(\left( O \right)\) lần lượt tại \(B\) nên \(AB \bot OB\).
Xét \(\Delta OAB\) vuông tại \(B,\) ta có: \(O{A^2} = A{B^2} + O{B^2}\) (định lí Pythagore)
Suy ra \(A{B^2} = O{A^2} - O{B^2} = {5^2} - {3^2} = 16.\) Do đó \(AB = 4{\rm{\;cm}}.\)
Trong \(\Delta OAB\) vuông tại \(B,\) ta cũng có: \({\rm{sin}}\widehat {OAB} = \frac{{OB}}{{OA}} = \frac{3}{5}.\)
Xét \(\Delta OAC\) vuông tại \(C,\) ta cũng có: \({\rm{tan}}\widehat {COA} = \frac{{AC}}{{OC}} = \frac{4}{3}.\)
Hai tiếp tuyến \(B\) và \(C\) của đường tròn \(\left( O \right)\) cắt nhau tại \(A\) nên:
⦁ \[AC = AB = 4{\rm{\;cm;}}\]
⦁ \(AO\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAO} = \widehat {CAO}.\)
Như vậy, phương án D là khẳng định sai. Ta chọn phương án D.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Ta có \[D\] đối xứng với \[B\] qua \[O.\] Suy ra \[O\] là trung điểm \[BD.\] Do đó \[BD\] là đường kính của đường tròn \[\left( O \right).\]
Tam giác \[BED\] có \[EO\] là đường trung tuyến và \[EO = \frac{{BD}}{2}\] nên tam giác \[BED\] vuông tại \[E.\]
Ta có \[AB\] là tiếp tuyến của đường tròn \[\left( O \right)\] tại \(B\) nên \[AB \bot BD.\]
Xét \[\Delta BED\] và \[\Delta ABD,\] có:
\[\widehat {BED} = \widehat {ABD} = 90^\circ \] và \[\widehat {BDE}\] là góc chung.
Do đó (g.g)
Suy ra \[\frac{{DE}}{{DB}} = \frac{{BE}}{{AB}}\] hay \[\frac{{DE}}{{BE}} = \frac{{DB}}{{AB}}.\]
Vậy ta chọn phương án D.
Lời giải
Đáp án đúng là: A
Vì đường tròn \[\left( O \right)\] có \[IA,IB\] là hai tiếp tuyến cắt nhau tại \[I\] nên \[\widehat {AOI} = \widehat {KOI}.\]
Lại có \[OA\,{\rm{//}}\,KI\] (vì cùng vuông góc với \[AI\]) nên \[\widehat {AOI} = \widehat {KIO}\] (cặp góc so le trong)
Do đó \[\widehat {KOI} = \widehat {KIO}.\]
Vì vậy tam giác \[KOI\] cân tại \[K.\]
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất)- Đề số 1