I. Nhận biết
Cho đường tròn \[\left( {O;\,2{\rm{\;cm}}} \right)\] và một điểm \[H\] bất kì. Nếu \[OH < 2{\rm{\;cm}}\] thì
A. điểm \[H\] nằm ngoài đường tròn \[\left( {O\,;\,2{\rm{\;cm}}} \right).\]
B. điểm \[H\] nằm trên đường tròn \[\left( {O\,;\,2{\rm{\;cm}}} \right).\]
C. điểm \[H\] nằm trong đường tròn \[\left( {O\,;\,2{\rm{\;cm}}} \right).\]
D. điểm \[H\] trùng tâm \[O\] của đường tròn \[\left( {O\,;\,2{\rm{\;cm}}} \right).\]
Quảng cáo
Trả lời:
Đáp án đúng là: C
Do \[OH < 2{\rm{\;cm}}\] nên điểm \[H\] nằm trong đường tròn \[\left( {O\,;\,2{\rm{\;cm}}} \right).\]
Vậy ta chọn phương án C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Tam giác cân.
Lời giải
Đáp án đúng là: C

Vì \(AB\) và \(AC\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) cắt nhau tại \(A\) nên \(AO\) là tia phân giác của \(\widehat {BAC}.\) Do đó \[\widehat {BAO} = \frac{1}{2}\widehat {BAC} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\]
Do \(AB\) là tiếp tuyến của đường tròn \(\left( O \right)\) tại \(B\) nên \(AB \bot OB\).
Khi đó \(\Delta ABO\) vuông tại \(B\) có \[\widehat {BAO} = 45^\circ \] nên là tam giác vuông cân tại \(B\).
Câu 2
A. \[8,5{\rm{\;cm}}.\]
Lời giải
Đáp án đúng là: A

Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD\] của hình chữ nhật \[ABCD.\] Suy ra \[O\] là trung điểm của \[AC\] và \[BD.\]
Do đó \[OA = OC\] và \[OB = OD.\]
Mà \[AC = BD\] (do \[AC\] và \[BD\] là hai đường chéo của hình chữ nhật \[ABCD\]).
Suy ra \[OA = OC = OB = OD.\]
Như vậy bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn tâm \[O\] bán kính \[OB.\]
Áp dụng định lí Pythagore cho tam giác \[ABD\] vuông tại \[A,\] ta được:
\[B{D^2} = A{B^2} + A{D^2} = {15^2} + {8^2} = 289.\] Suy ra \[BD = 17{\rm{\;(cm)}}{\rm{.}}\]
Vì \[O\] là trung điểm của \[BD\] nên \[OB = \frac{{BD}}{2} = \frac{{17}}{2} = 8,5{\rm{\;(cm)}}{\rm{.}}\]
Do đó bán kính đường tròn cần tìm là \[OB = 8,5{\rm{\;(cm)}}{\rm{.}}\]
Vậy ta chọn phương án A.
Câu 3
A. Chỉ (i) đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\frac{{25\pi }}{2}{\rm{\;d}}{{\rm{m}}^2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\widehat {AOD} = 3\widehat {ACD}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\frac{{4\pi }}{3}{\rm{\;cm}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[5\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Một họa tiết trang trí có dạng hình tròn bán kính \[5{\rm{\;dm}}\] được chia thành nhiều hình quạt tròn (hình vẽ), mỗi hình quạt tròn có góc ở tâm là \[7,5^\circ .\] Diện tích tất cả các hình (ảnh 1)](https://video.vietjack.com/upload2/images/1731403622/1731404338-image12.png)
