Câu hỏi:

12/11/2024 347 Lưu

I. Nhận biết

Cho đường tròn \[\left( {O;\,2{\rm{\;cm}}} \right)\] và một điểm \[H\] bất kì. Nếu \[OH < 2{\rm{\;cm}}\] thì

A. điểm \[H\] nằm ngoài đường tròn \[\left( {O\,;\,2{\rm{\;cm}}} \right).\]

B. điểm \[H\] nằm trên đường tròn \[\left( {O\,;\,2{\rm{\;cm}}} \right).\]

C. điểm \[H\] nằm trong đường tròn \[\left( {O\,;\,2{\rm{\;cm}}} \right).\]

D. điểm \[H\] trùng tâm \[O\] của đường tròn \[\left( {O\,;\,2{\rm{\;cm}}} \right).\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Do \[OH < 2{\rm{\;cm}}\] nên điểm \[H\] nằm trong đường tròn \[\left( {O\,;\,2{\rm{\;cm}}} \right).\]

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho đường tròn tâm  O  và điểm  A  nằm ngoài đường tròn. Từ  A  kẻ hai tiếp tiếp tuyến  A B  và  A C  của đường tròn tâm  O  (điểm  B , C  là tiếp điểm). Nếu  ˆ B A C = 90 ∘  thì tam giác  A B O  là (ảnh 1)

Vì \(AB\) và \(AC\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) cắt nhau tại \(A\) nên \(AO\) là tia phân giác của \(\widehat {BAC}.\) Do đó \[\widehat {BAO} = \frac{1}{2}\widehat {BAC} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\]

Do \(AB\) là tiếp tuyến của đường tròn \(\left( O \right)\) tại \(B\) nên \(AB \bot OB\).

Khi đó \(\Delta ABO\) vuông tại \(B\) có \[\widehat {BAO} = 45^\circ \] nên là tam giác vuông cân tại \(B\).

Lời giải

Đáp án đúng là: D

Cho đường tròn  ( O )  bán kính  O A .  Từ trung điểm  M  của  O A  vẽ dây  B C ⊥ O A .  Biết độ dài đường tròn  ( O )  là  4 π c m .  Độ dài cung lớn  B C  là (ảnh 1)

Ta có \(BC \bot OA\) tại trung điểm \[M\] của \[OA\] nên \(BC\) là đường trung trực của đoạn thẳng \(OA.\)

Do đó \[OB = AB.\]

Mà \[OA = OB\] nên \[OA = OB = AB.\] Suy ra tam giác \[OAB\] là tam giác đều.

Do đó \[\widehat {AOB} = 60^\circ .\]

Chứng minh tương tự, ta được \[\widehat {AOC} = 60^\circ .\]

Ta có

Khi đó số đo cung lớn \[BC\] bằng

Độ dài cung lớn \[BC\] là: \[l = \frac{n}{{360}}C = \frac{{240}}{{360}} \cdot 4\pi = \frac{{8\pi }}{3}{\rm{\;(cm)}}{\rm{.}}\]

Vậy ta chọn phương án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[d \equiv OA.\]

B. \[d \bot OA\] tại \[O.\]
C. \[d\,{\rm{//}}\,OA.\]
D. \[d \bot OA\] tại \[A.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP