Cho hai đường tròn \[\left( {O;R} \right),\,\,\left( {O';R'} \right)\] cắt nhau tại \[A,\,\,B,\] trong đó \[O' \in \left( O \right).\] Kẻ đường kính \[O'C\] của \[\left( O \right).\] Khẳng định nào sau đây là đúng nhất?
A. \[\widehat {CBO'} = 90^\circ .\]
Quảng cáo
Trả lời:
Đáp án đúng là: D

Đường tròn \[\left( O \right)\] có \[O'C\] là đường kính nên \[O\] là trung điểm \[O'C.\] Do đó \[OO' = OC.\]
Tam giác \[O'BC\] có \[BO\] là đường trung tuyến ứng với cạnh \(O'C\) và \[OB = \frac{{O'C}}{2}\] nên tam giác \[O'BC\] vuông tại \[B\] hay \[\widehat {CBO'} = 90^\circ .\]
Khi đó \[BC \bot O'B\] tại \[B\] thuộc đường tròn \(\left( {O'} \right)\). Vì vậy \[CB\] là tiếp tuyến của \[\left( {O'} \right).\]
Chứng minh tương tự, ta được \[CA\] là tiếp tuyến của \[\left( {O'} \right).\]
Đường tròn \[\left( {O'} \right)\] có \[CA,CB\] là hai tiếp tuyến cắt nhau tại \[C.\]
Áp dụng tính chất hai tiếp tuyến cắt nhau, ta được \[CA = CB.\]
Như vậy cả A, B, C đều là khẳng định đúng.
Vậy ta chọn phương án D.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Tam giác cân.
Lời giải
Đáp án đúng là: C

Vì \(AB\) và \(AC\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) cắt nhau tại \(A\) nên \(AO\) là tia phân giác của \(\widehat {BAC}.\) Do đó \[\widehat {BAO} = \frac{1}{2}\widehat {BAC} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\]
Do \(AB\) là tiếp tuyến của đường tròn \(\left( O \right)\) tại \(B\) nên \(AB \bot OB\).
Khi đó \(\Delta ABO\) vuông tại \(B\) có \[\widehat {BAO} = 45^\circ \] nên là tam giác vuông cân tại \(B\).
Câu 2
A. \[8,5{\rm{\;cm}}.\]
Lời giải
Đáp án đúng là: A

Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD\] của hình chữ nhật \[ABCD.\] Suy ra \[O\] là trung điểm của \[AC\] và \[BD.\]
Do đó \[OA = OC\] và \[OB = OD.\]
Mà \[AC = BD\] (do \[AC\] và \[BD\] là hai đường chéo của hình chữ nhật \[ABCD\]).
Suy ra \[OA = OC = OB = OD.\]
Như vậy bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn tâm \[O\] bán kính \[OB.\]
Áp dụng định lí Pythagore cho tam giác \[ABD\] vuông tại \[A,\] ta được:
\[B{D^2} = A{B^2} + A{D^2} = {15^2} + {8^2} = 289.\] Suy ra \[BD = 17{\rm{\;(cm)}}{\rm{.}}\]
Vì \[O\] là trung điểm của \[BD\] nên \[OB = \frac{{BD}}{2} = \frac{{17}}{2} = 8,5{\rm{\;(cm)}}{\rm{.}}\]
Do đó bán kính đường tròn cần tìm là \[OB = 8,5{\rm{\;(cm)}}{\rm{.}}\]
Vậy ta chọn phương án A.
Câu 3
A. Chỉ (i) đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\frac{{25\pi }}{2}{\rm{\;d}}{{\rm{m}}^2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\widehat {AOD} = 3\widehat {ACD}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\frac{{4\pi }}{3}{\rm{\;cm}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[5\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Một họa tiết trang trí có dạng hình tròn bán kính \[5{\rm{\;dm}}\] được chia thành nhiều hình quạt tròn (hình vẽ), mỗi hình quạt tròn có góc ở tâm là \[7,5^\circ .\] Diện tích tất cả các hình (ảnh 1)](https://video.vietjack.com/upload2/images/1731403622/1731404338-image12.png)
