Câu hỏi:
13/11/2024 65Cho hình chữ nhật \[ABCD\] có \[AD = 8{\rm{\;cm}},\,\,AB = 15{\rm{\;cm}}.\] Biết rằng bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn. Bán kính của đường tròn đó bằng
Quảng cáo
Trả lời:
Đáp án đúng là: A
Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD\] của hình chữ nhật \[ABCD.\] Suy ra \[O\] là trung điểm của \[AC\] và \[BD.\]
Do đó \[OA = OC\] và \[OB = OD.\]
Mà \[AC = BD\] (do \[AC\] và \[BD\] là hai đường chéo của hình chữ nhật \[ABCD\]).
Suy ra \[OA = OC = OB = OD.\]
Như vậy bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn tâm \[O\] bán kính \[OB.\]
Áp dụng định lí Pythagore cho tam giác \[ABD\] vuông tại \[A,\] ta được:
\[B{D^2} = A{B^2} + A{D^2} = {15^2} + {8^2} = 289.\] Suy ra \[BD = 17{\rm{\;(cm)}}{\rm{.}}\]
Vì \[O\] là trung điểm của \[BD\] nên \[OB = \frac{{BD}}{2} = \frac{{17}}{2} = 8,5{\rm{\;(cm)}}{\rm{.}}\]
Do đó bán kính đường tròn cần tìm là \[OB = 8,5{\rm{\;(cm)}}{\rm{.}}\]
Vậy ta chọn phương án A.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Vì \(ABCD\) là hình vuông nên \(AB = BC = CD = DA = 2{\rm{\;cm}}.\)
Áp dụng định lí Pythagore cho \(\Delta ABC\) vuông tại \(B\) có:
\(A{C^2} = A{B^2} + B{C^2} = {2^2} + {2^2} = 8.\) Suy ra \(AC = 2\sqrt 2 {\rm{\;cm}}{\rm{.}}\)
Vì \(I,\,\,J\) lần lượt là trung điểm của \(AC,\,\,CD\) nên ta có:
⦁ \(AI = \frac{{AC}}{2} = \sqrt 2 {\rm{\;cm;}}\)
⦁ \(CJ = \frac{{CD}}{2} = 1{\rm{\;cm}}.\)
Ta có: \(AI + CJ = \sqrt 2 + 1{\rm{\;(cm)}}\) và \(AC = 2\sqrt 2 {\rm{\;cm}}{\rm{.}}\)
Suy ra \(AI + CJ < AC\) (do \(1 + \sqrt 2 < 2\sqrt 2 )\) nên hai đường tròn ở ngoài nhau.
Vậy ta chọn phương án C.
Lời giải
Đáp án đúng là: A
Diện tích hình vành khuyên giới hạn bởi hai đường tròn đồng tâm \[\left( {O;2{\rm{\;cm}}} \right)\] và \[\left( {O;3{\rm{\;cm}}} \right)\] là:
\[{S_v} = \pi \left( {{R^2} - {r^2}} \right) = \pi \left( {{3^2} - {2^2}} \right) = 5\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.