Câu hỏi:

13/11/2024 54

Cho hai đường tròn \[\left( {O;R} \right),\,\,\left( {O';R'} \right)\] cắt nhau tại \[A,\,\,B,\] trong đó \[O' \in \left( O \right).\] Kẻ đường kính \[O'C\] của \[\left( O \right).\] Khẳng định nào sau đây là đúng nhất?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Đường tròn \[\left( O \right)\] có \[O'C\] là đường kính nên \[O\] là trung điểm \[O'C.\] Do đó \[OO' = OC.\]

Tam giác \[O'BC\] có \[BO\] là đường trung tuyến ứng với cạnh \(O'C\) và \[OB = \frac{{O'C}}{2}\] nên tam giác \[O'BC\] vuông tại \[B\] hay \[\widehat {CBO'} = 90^\circ .\]

Khi đó \[BC \bot O'B\] tại \[B\] thuộc đường tròn \(\left( {O'} \right)\). Vì vậy \[CB\] là tiếp tuyến của \[\left( {O'} \right).\]

Chứng minh tương tự, ta được \[CA\] là tiếp tuyến của \[\left( {O'} \right).\]

Đường tròn \[\left( {O'} \right)\] có \[CA,CB\] là hai tiếp tuyến cắt nhau tại \[C.\]

Áp dụng tính chất hai tiếp tuyến cắt nhau, ta được \[CA = CB.\]

Như vậy cả A, B, C đều là khẳng định đúng.

Vậy ta chọn phương án D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vuông \(ABCD\) cạnh bằng \(2{\rm{\;cm}}.\) Gọi \(I,\,\,J\) lần lượt là trung điểm của \(AC,\,\,CD.\) Vị trí tương đối của đường tròn \(\left( {A;\,AI} \right)\) và \(\left( {C;\,CJ} \right)\) là

Xem đáp án » 13/11/2024 1,133

Câu 2:

Cho hai đường tròn đồng tâm \[\left( {O;2{\rm{\;cm}}} \right)\] và \[\left( {O;3{\rm{\;cm}}} \right).\]

Cho hai đường tròn đồng tâm  ( O ; 2 c m )  và  ( O ; 3 c m ) . Diện tích hình vành khuyên được giới hạn bởi hai đường tròn đó là (ảnh 1)

Diện tích hình vành khuyên được giới hạn bởi hai đường tròn đó là

Xem đáp án » 13/11/2024 616

Câu 3:

Cho đường tròn \[\left( {O;R} \right).\] Từ một điểm \[M\] nằm ngoài đường tròn kẻ các tiếp tuyến \[ME,MF\] đến đường tròn (với \[E,F\] là các tiếp điểm). Đoạn \[OM\] cắt đường tròn \[\left( O \right)\] tại \[I.\] Kẻ đường kính \[ED\] của đường tròn \[\left( O \right).\] Hạ \[FK\] vuông góc với \[ED.\] Gọi \[P\] là giao điểm của \[MD\] và \[FK.\] Cho \[FK = 6{\rm{\;cm}}\] và các khẳng định sau:

(i) Các điểm \[M,E,O,F\] cùng thuộc một đường tròn.

(ii) \[FP = PK = 3{\rm{\;cm}}.\]

Xem đáp án » 13/11/2024 166

Câu 4:

Cho đường tròn \[\left( {O;R} \right)\] và dây \[AB = R.\] Trên tia đối của tia \[BA\] lấy điểm \[C\] sao cho \[BC = BA.\] Kéo dài \[CO\] cắt đường tròn \[\left( O \right)\] lần lượt tại \[D,E\] (\[D\] nằm giữa \[C,O\]). Kết luận nào sau đây là sai?

Xem đáp án » 13/11/2024 139

Câu 5:

Cho đường tròn \[\left( {O;OA} \right)\] và đường tròn \[\left( {O'} \right)\] đường kính \[OA.\] Vị trí tương đối của hai đường tròn\[\left( O \right)\] và \[\left( {O'} \right)\] là

Xem đáp án » 13/11/2024 109

Câu 6:

Hai tiếp tuyến tại \(B\) và \(C\) của đường tròn \((O)\) cắt nhau tại \(A\). Khẳng định nào sau đây là sai?

Xem đáp án » 13/11/2024 107

Câu 7:

Cho đường tròn tâm \(O\) và điểm \(A\) nằm ngoài đường tròn. Từ \(A\) kẻ hai tiếp tiếp tuyến \(AB\) và \(AC\) của đường tròn tâm \(O\) (điểm \(B,C\) là tiếp điểm). Nếu \(\widehat {BAC} = 90^\circ \) thì tam giác \(ABO\) là

Xem đáp án » 13/11/2024 104
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua