Câu hỏi:

13/11/2024 62

Cho hai đường tròn \[\left( {O;R} \right),\,\,\left( {O';R'} \right)\] cắt nhau tại \[A,\,\,B,\] trong đó \[O' \in \left( O \right).\] Kẻ đường kính \[O'C\] của \[\left( O \right).\] Khẳng định nào sau đây là đúng nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Đường tròn \[\left( O \right)\] có \[O'C\] là đường kính nên \[O\] là trung điểm \[O'C.\] Do đó \[OO' = OC.\]

Tam giác \[O'BC\] có \[BO\] là đường trung tuyến ứng với cạnh \(O'C\) và \[OB = \frac{{O'C}}{2}\] nên tam giác \[O'BC\] vuông tại \[B\] hay \[\widehat {CBO'} = 90^\circ .\]

Khi đó \[BC \bot O'B\] tại \[B\] thuộc đường tròn \(\left( {O'} \right)\). Vì vậy \[CB\] là tiếp tuyến của \[\left( {O'} \right).\]

Chứng minh tương tự, ta được \[CA\] là tiếp tuyến của \[\left( {O'} \right).\]

Đường tròn \[\left( {O'} \right)\] có \[CA,CB\] là hai tiếp tuyến cắt nhau tại \[C.\]

Áp dụng tính chất hai tiếp tuyến cắt nhau, ta được \[CA = CB.\]

Như vậy cả A, B, C đều là khẳng định đúng.

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho hình vuông  A B C D  cạnh bằng  2 c m .  Gọi  I , J  lần lượt là trung điểm của  A C , C D .  Vị trí tương đối của đường tròn  ( A ; A I )  và  ( C ; C J )  là (ảnh 1)

Vì \(ABCD\) là hình vuông nên \(AB = BC = CD = DA = 2{\rm{\;cm}}.\)

Áp dụng định lí Pythagore cho \(\Delta ABC\) vuông tại \(B\) có:

\(A{C^2} = A{B^2} + B{C^2} = {2^2} + {2^2} = 8.\) Suy ra \(AC = 2\sqrt 2 {\rm{\;cm}}{\rm{.}}\)

Vì \(I,\,\,J\) lần lượt là trung điểm của \(AC,\,\,CD\) nên ta có:

⦁ \(AI = \frac{{AC}}{2} = \sqrt 2 {\rm{\;cm;}}\)

⦁ \(CJ = \frac{{CD}}{2} = 1{\rm{\;cm}}.\)

Ta có: \(AI + CJ = \sqrt 2 + 1{\rm{\;(cm)}}\) và \(AC = 2\sqrt 2 {\rm{\;cm}}{\rm{.}}\)

Suy ra \(AI + CJ < AC\) (do \(1 + \sqrt 2 < 2\sqrt 2 )\) nên hai đường tròn ở ngoài nhau.

Vậy ta chọn phương án C.

Câu 2

Lời giải

Đáp án đúng là: A

Diện tích hình vành khuyên giới hạn bởi hai đường tròn đồng tâm \[\left( {O;2{\rm{\;cm}}} \right)\] và \[\left( {O;3{\rm{\;cm}}} \right)\] là:

\[{S_v} = \pi \left( {{R^2} - {r^2}} \right) = \pi \left( {{3^2} - {2^2}} \right) = 5\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Vậy ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP