Câu hỏi:

13/11/2024 222 Lưu

Cho đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và một điểm \[K\] bất kì. Biết rằng \[OK = 7{\rm{\;cm}}.\] Khẳng định nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta thấy đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] có bán kính \[R = 5{\rm{\;(cm)}}{\rm{.}}\]

Vì \[7{\rm{\;(cm)}} > 5{\rm{\;(cm)}}\] nên \[OK > R.\]

Do đó điểm \[K\] nằm ngoài đường tròn \[\left( {O;5{\rm{\;cm}}} \right).\]

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Để hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) tiếp xúc trong thì \(OI = 5 - R > 0\)

Suy ra \[R = 5 - OI = 5 - 3 = 2{\rm{\;(cm)}}{\rm{.}}\]

Lời giải

Đáp án đúng là: B

Vì hai đường tròn \(\left( {O;1{\rm{\;cm}}} \right)\) và \(\left( {I;3{\rm{\;cm}}} \right)\) cắt nhau nên ta có:

\[3{\rm{\;cm}} - 1{\rm{\;cm}} < OI < 3{\rm{\;cm}} + 1{\rm{\;cm}}\]

Hay \[2{\rm{\;cm}} < OI < 4{\rm{\;cm}}.\]

Trong các phương án đã cho, ta thấy chỉ có giá trị \(OI = 3{\rm{\;cm}}\) thỏa mãn điều kiện trên.

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP