Câu hỏi:

13/11/2024 99

Hai tiếp tuyến tại \[B\] và \[C\] của đường tròn \[\left( {O;R} \right)\] cắt nhau tại \[A.\] Vẽ đường kính \[CD\] đường tròn \[\left( O \right).\] Khẳng định nào sau đây là đúng?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Hai tiếp tuyến tại  B  và  C  của đường tròn  ( O ; R )  cắt nhau tại  A .  Vẽ đường kính  C D  đường tròn  ( O ) .  Khẳng định nào sau đây là đúng? (ảnh 1)

Gọi \[H\] là giao điểm của \[BC\] và \[OA.\]

Xét đường tròn \[\left( O \right)\] có hai tiếp tuyến tại \[B\] và \[C\] cắt nhau tại \[A\] nên áp dụng tính chất hai tiếp tuyến cắt nhau, ta được \[AB = AC.\] Do đó điểm \[A\] nằm trên đường trung trực của đoạn \[BC\] (1)

Đường tròn \[\left( O \right)\] có \[OB = OC = R\] nên điểm \[O\] nằm trên đường trung trực của đoạn \[BC\] (2)

Từ (1), (2), ta thu được \[OA\] là đường trung trực của đoạn \[BC.\]

Suy ra \[OA \bot BC\] tại \[H\] là trung điểm của \[BC.\] (3)

Đường tròn \[\left( O \right)\] có \[CD\] là đường kính nên tâm \[O\] là trung điểm \[CD\] hay \[OC = OD = \frac{{CD}}{2} = BO.\]

Xét tam giác \[BCD\] có \[BO\] là đường trung tuyến ứng với cạnh \[CD\] và \[BO = \frac{{CD}}{2}\] nên tam giác \[BCD\] vuông tại \[B\] hay \[BD \bot BC\] (4)

Từ (3), (4), ta suy ra \[BD\,{\rm{//}}\,OA.\]

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \[\left( {O;R} \right)\] đường kính \[BC,\] lấy điểm \[A \in \left( O \right).\] Gọi \[H\] là trung điểm của \[AC.\] Tia \[OH\] cắt đường tròn \[\left( O \right)\] tại \[M.\] Từ \[A\] vẽ tiếp tuyến với đường tròn \[\left( O \right)\] cắt tia \[OM\] tại \[N.\] Cho các khẳng định sau:

(i) \[OH \cdot ON = {R^2}.\]

(ii) \[CN\] là tiếp tuyến của \[\left( O \right).\]

Kết luận nào sau đây là đúng nhất?

Xem đáp án » 13/11/2024 2,521

Câu 2:

Cho đường tròn \[\left( O \right)\] đường kính \[AD.\] Vẽ tiếp tuyến \[AC\] tại \[A\] của đường tròn, từ \[C\] trên tiếp tuyến đó vẽ tiếp tuyến thứ hai \[CM\] của đường tròn \[\left( O \right)\] (\[M\] là tiếp điểm và \[M\] khác \[A\]) cắt \[AD\] tại \[B.\] Giả sử \[AC = 6{\rm{\;cm}},AB = 8{\rm{\;cm}}.\] Độ dài \[BM\] bằng

Xem đáp án » 13/11/2024 2,468

Câu 3:

Một thủy thủ đang ở trên cột buồm của một con tàu, cách mặt nước biển \[10{\rm{\;m}}.\] Biết bán kính Trái Đất là khoảng \[6\,\,400{\rm{\;km}}.\] Tầm nhìn xa tối đa (làm tròn kết quả đến hàng phần nghìn của km) của thủy thủ đó bằng khoảng

Xem đáp án » 13/11/2024 705

Câu 4:

Hai tiếp tuyến tại \[A\] và \[B\] của đường tròn \[\left( O \right)\] cắt nhau tại \[I.\] Đường thẳng qua \[I\] vuông góc với \[IA\] cắt \[OB\] tại \[K.\] Khẳng định nào sau đây là đúng?

Xem đáp án » 13/11/2024 426

Câu 5:

Hai tiếp tuyến tại \[B\] và \[C\] của đường tròn \[\left( {O;R} \right)\] cắt nhau tại \[A.\] Khẳng định nào sau đây là sai?

Xem đáp án » 13/11/2024 397

Câu 6:

Cho đường tròn \[\left( O \right)\] và điểm \[A\] nằm trên đường tròn \[\left( O \right).\] Nếu đường thẳng \[d \bot OA\] tại \[A\] thì

Xem đáp án » 13/11/2024 372

Câu 7:

Cho đường tròn \[\left( O \right),\] từ một điểm \[M\] ở ngoài \[\left( O \right),\] vẽ hai tiếp tuyến \[MA\] và \[MB\] sao cho \[\widehat {AMB}\] bằng \[120^\circ .\] Biết chu vi tam giác \[MAB\] là \[6\left( {3 + 2\sqrt 3 } \right){\rm{\;cm}}.\] Khi đó độ dài dây \[AB\] bằng

Xem đáp án » 13/11/2024 255

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store