Câu hỏi:
13/11/2024 121III. Vận dụng
Cho nửa đường tròn \[\left( {O;R} \right)\] đường kính \[AB.\] Vẽ các tia tiếp tuyến \[Ax,By\] với nửa đường tròn. Lấy điểm \[M\] di động trên tia \[Ax,\] điểm \[N\] di động trên tia \[By\] sao cho \[AM \cdot BN = {R^2}.\] Cho các nhận định sau:
(i) \[MN\] là tiếp tuyến của đường tròn \[\left( O \right).\]
(ii) \[\widehat {MON} = 90^\circ .\]
Kết luận nào sau đây là đúng nhất?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
⦁ Kẻ \[OH \bot MN\] tại \[H.\]
Vì \[AM \cdot BN = {R^2} = AO \cdot BO\] nên \[\frac{{AM}}{{BO}} = \frac{{AO}}{{BN}}.\]
Xét \[\Delta AOM\] và \[\Delta BNO,\] có:
\[\widehat {OAM} = \widehat {OBN} = 90^\circ \] (vì \[AM,BN\] là các tiếp tuyến của \[\left( O \right)\]);
\[\frac{{AM}}{{BO}} = \frac{{AO}}{{BN}}\] (chứng minh trên).
Do đó (c.g.c)
Suy ra \[\widehat {{M_1}} = \widehat {{O_2}};\] \[\widehat {{O_1}} = \widehat {{N_1}}\] và \[\frac{{AM}}{{BO}} = \frac{{OM}}{{ON}}\] hay \[\frac{{AM}}{{OM}} = \frac{{BO}}{{ON}}.\]
Vì tam giác \[AOM\] vuông tại \[A\] nên \[\widehat {{M_1}} + \widehat {{O_1}} = 90^\circ .\] Suy ra \[\widehat {{O_1}} + \widehat {{O_2}} = 90^\circ .\]
Ta có \[\widehat {AOB} = 180^\circ \] hay \[\widehat {{O_1}} + \widehat {MON} + \widehat {{O_2}} = 180^\circ .\]
Tức là, \[\widehat {MON} = 180^\circ - \left( {\widehat {{O_1}} + \widehat {{O_2}}} \right) = 180^\circ - 90^\circ = 90^\circ .\] Do đó (ii) là nhận định đúng.
⦁ Xét \[\Delta AOM\] và \[\Delta ONM,\] có:
\[\widehat {OAM} = \widehat {MON} = 90^\circ ;\]
\[\frac{{AM}}{{OM}} = \frac{{AO}}{{ON}}\] (do \[\frac{{AM}}{{OM}} = \frac{{BO}}{{ON}},\,\,AO = BO).\]
Do đó (c.g.c)
Suy ra \[\widehat {{M_1}} = \widehat {{M_2}}.\]
Xét \[\Delta AOM\] và \[\Delta HOM,\] có:
\[\widehat {OAM} = \widehat {OHM} = 90^\circ ;\] \[OM\] là cạnh chung; \[\widehat {{M_1}} = \widehat {{M_2}}\]
Do đó \[\Delta AOM = \Delta HOM\] (cạnh huyền – góc nhọn)
Suy ra \[OA = OH,\] mà \(OA = R\) nên \(OH = R\).
Vì \[OH = R\] và \[OH \bot MN\] tại \[H\] nên \[MN\] là tiếp tuyến của đường tròn \(H.\)
Do đó (i) là nhận định đúng.
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn \[\left( {O;R} \right)\] đường kính \[BC,\] lấy điểm \[A \in \left( O \right).\] Gọi \[H\] là trung điểm của \[AC.\] Tia \[OH\] cắt đường tròn \[\left( O \right)\] tại \[M.\] Từ \[A\] vẽ tiếp tuyến với đường tròn \[\left( O \right)\] cắt tia \[OM\] tại \[N.\] Cho các khẳng định sau:
(i) \[OH \cdot ON = {R^2}.\]
(ii) \[CN\] là tiếp tuyến của \[\left( O \right).\]
Kết luận nào sau đây là đúng nhất?
Câu 2:
Cho đường tròn \[\left( O \right)\] đường kính \[AD.\] Vẽ tiếp tuyến \[AC\] tại \[A\] của đường tròn, từ \[C\] trên tiếp tuyến đó vẽ tiếp tuyến thứ hai \[CM\] của đường tròn \[\left( O \right)\] (\[M\] là tiếp điểm và \[M\] khác \[A\]) cắt \[AD\] tại \[B.\] Giả sử \[AC = 6{\rm{\;cm}},AB = 8{\rm{\;cm}}.\] Độ dài \[BM\] bằng
Câu 3:
Một thủy thủ đang ở trên cột buồm của một con tàu, cách mặt nước biển \[10{\rm{\;m}}.\] Biết bán kính Trái Đất là khoảng \[6\,\,400{\rm{\;km}}.\] Tầm nhìn xa tối đa (làm tròn kết quả đến hàng phần nghìn của km) của thủy thủ đó bằng khoảng
Câu 4:
Hai tiếp tuyến tại \[A\] và \[B\] của đường tròn \[\left( O \right)\] cắt nhau tại \[I.\] Đường thẳng qua \[I\] vuông góc với \[IA\] cắt \[OB\] tại \[K.\] Khẳng định nào sau đây là đúng?
Câu 5:
Hai tiếp tuyến tại \[B\] và \[C\] của đường tròn \[\left( {O;R} \right)\] cắt nhau tại \[A.\] Khẳng định nào sau đây là sai?
Câu 6:
Cho đường tròn \[\left( O \right)\] và điểm \[A\] nằm trên đường tròn \[\left( O \right).\] Nếu đường thẳng \[d \bot OA\] tại \[A\] thì
Câu 7:
Cho đường tròn \[\left( O \right),\] từ một điểm \[M\] ở ngoài \[\left( O \right),\] vẽ hai tiếp tuyến \[MA\] và \[MB\] sao cho \[\widehat {AMB}\] bằng \[120^\circ .\] Biết chu vi tam giác \[MAB\] là \[6\left( {3 + 2\sqrt 3 } \right){\rm{\;cm}}.\] Khi đó độ dài dây \[AB\] bằng
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!