Câu hỏi:
13/11/2024 207III. Vận dụng
Cho nửa đường tròn \[\left( {O;R} \right)\] đường kính \[AB.\] Vẽ các tia tiếp tuyến \[Ax,By\] với nửa đường tròn. Lấy điểm \[M\] di động trên tia \[Ax,\] điểm \[N\] di động trên tia \[By\] sao cho \[AM \cdot BN = {R^2}.\] Cho các nhận định sau:
(i) \[MN\] là tiếp tuyến của đường tròn \[\left( O \right).\]
(ii) \[\widehat {MON} = 90^\circ .\]
Kết luận nào sau đây là đúng nhất?
Quảng cáo
Trả lời:
Đáp án đúng là: C
⦁ Kẻ \[OH \bot MN\] tại \[H.\]
Vì \[AM \cdot BN = {R^2} = AO \cdot BO\] nên \[\frac{{AM}}{{BO}} = \frac{{AO}}{{BN}}.\]
Xét \[\Delta AOM\] và \[\Delta BNO,\] có:
\[\widehat {OAM} = \widehat {OBN} = 90^\circ \] (vì \[AM,BN\] là các tiếp tuyến của \[\left( O \right)\]);
\[\frac{{AM}}{{BO}} = \frac{{AO}}{{BN}}\] (chứng minh trên).
Do đó (c.g.c)
Suy ra \[\widehat {{M_1}} = \widehat {{O_2}};\] \[\widehat {{O_1}} = \widehat {{N_1}}\] và \[\frac{{AM}}{{BO}} = \frac{{OM}}{{ON}}\] hay \[\frac{{AM}}{{OM}} = \frac{{BO}}{{ON}}.\]
Vì tam giác \[AOM\] vuông tại \[A\] nên \[\widehat {{M_1}} + \widehat {{O_1}} = 90^\circ .\] Suy ra \[\widehat {{O_1}} + \widehat {{O_2}} = 90^\circ .\]
Ta có \[\widehat {AOB} = 180^\circ \] hay \[\widehat {{O_1}} + \widehat {MON} + \widehat {{O_2}} = 180^\circ .\]
Tức là, \[\widehat {MON} = 180^\circ - \left( {\widehat {{O_1}} + \widehat {{O_2}}} \right) = 180^\circ - 90^\circ = 90^\circ .\] Do đó (ii) là nhận định đúng.
⦁ Xét \[\Delta AOM\] và \[\Delta ONM,\] có:
\[\widehat {OAM} = \widehat {MON} = 90^\circ ;\]
\[\frac{{AM}}{{OM}} = \frac{{AO}}{{ON}}\] (do \[\frac{{AM}}{{OM}} = \frac{{BO}}{{ON}},\,\,AO = BO).\]
Do đó (c.g.c)
Suy ra \[\widehat {{M_1}} = \widehat {{M_2}}.\]
Xét \[\Delta AOM\] và \[\Delta HOM,\] có:
\[\widehat {OAM} = \widehat {OHM} = 90^\circ ;\] \[OM\] là cạnh chung; \[\widehat {{M_1}} = \widehat {{M_2}}\]
Do đó \[\Delta AOM = \Delta HOM\] (cạnh huyền – góc nhọn)
Suy ra \[OA = OH,\] mà \(OA = R\) nên \(OH = R\).
Vì \[OH = R\] và \[OH \bot MN\] tại \[H\] nên \[MN\] là tiếp tuyến của đường tròn \(H.\)
Do đó (i) là nhận định đúng.
Vậy ta chọn phương án C.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Vì \[AC\] là tiếp tuyến của đường tròn \[\left( O \right)\] nên \[AC \bot AO\] tại \[A.\]
Áp dụng định lí Pythagore cho tam giác \[ABC\] vuông tại \[A,\] ta được:
\[B{C^2} = A{B^2} + A{C^2} = {8^2} + {6^2} = 100.\] Suy ra \[BC = 10{\rm{\;(cm)}}{\rm{.}}\]
Vì \[AC,\,\,CM\] là hai tiếp tuyến của đường tròn \[\left( O \right)\] nên áp dụng tính chất hai tiếp tuyến cắt nhau, ta được \[CM = CA = 6{\rm{\;(cm)}}{\rm{.}}\]
Ta có \[BM = BC - CM = 10 - 6 = 4{\rm{\;(cm)}}{\rm{.}}\]
Vậy ta chọn phương án D.
Lời giải
Đáp án đúng là: C
⦁ Đường tròn \[\left( O \right)\] có \[OA = OC = R\] nên tam giác \[OAC\] cân tại \[O.\]
Tam giác \[OAC\] cân tại \[O\] có \[OH\] là đường trung tuyến nên \[OH\] cũng là đường cao của tam giác, do đó \[OH \bot AC\] hay \[\widehat {OHA} = 90^\circ .\]
Vì \[AN\] là tiếp tuyến của đường tròn \[\left( O \right)\] nên \[OA \bot AN\] hay \[\widehat {OAN} = 90^\circ .\]
Xét \[\Delta OHA\] và \[\Delta OAN,\] có:
\[\widehat {OHA} = \widehat {OAN} = 90^\circ ;\] \[\widehat {AON}\] là góc chung.
Do đó (g.g). Suy ra \[\frac{{OH}}{{OA}} = \frac{{OA}}{{ON}}.\]
Vì vậy \[OH \cdot ON = O{A^2} = {R^2}.\] Do đó khẳng định (i) là đúng.
⦁ Tam giác \[OAC\] cân tại \[O\] có \[OH\] là đường trung tuyến nên \[OH\] cũng là đường phân giác của tam giác, do đó \[\widehat {AOH} = \widehat {COH}.\]
Xét \[\Delta AON\] và \[\Delta CON,\] có:
\[OA = OC = R;\] \[\widehat {AON} = \widehat {CON};\] \[ON\] là cạnh chung.
Do đó \[\Delta AON = \Delta CON\] (c.g.c).
Suy ra \[\widehat {OAN} = \widehat {OCN}.\] Nên \[\widehat {OCN} = 90^\circ .\]
Vì vậy \[OC \bot CN\] tại \[C\] hay \[CN\] là tiếp tuyến của \[\left( O \right).\] Do đó khẳng định (ii) là đúng.
Vậy ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất)- Đề số 1
Chuyên đề 8: Hình học (có đáp án)