Câu hỏi:

13/11/2024 79

Cho đường tròn \[\left( {O;R} \right)\] và điểm \[A\] nằm trên đường tròn \[\left( {O;R} \right).\] Gọi \[H\] là điểm thuộc bán kính \[OA\] sao cho \[OH = \frac{{\sqrt 3 }}{2}OA.\] Dây \[CD\] vuông góc với \[OA\] tại \[H.\] Số đo cung lớn \[CD\] bằng

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho đường tròn  ( O ; R )  và điểm  A  nằm trên đường tròn  ( O ; R ) .  Gọi  H  là điểm thuộc bán kính  O A  sao cho  O H = √ 3 2 O A .  Dây  C D  vuông góc với  O A  tại  H .  Số đo cung lớn  C D  bằng (ảnh 1)

Vì tam giác \[OHD\] vuông tại \[H\] nên \[\cos \widehat {HOD} = \frac{{OH}}{{OD}} = \frac{{\frac{{\sqrt 3 }}{2}OA}}{{OD}} = \frac{{\frac{{\sqrt 3 }}{2} \cdot R}}{R} = \frac{{\sqrt 3 }}{2}.\]

Suy ra \[\widehat {HOD} = 30^\circ .\]

Tam giác \[OCD\] cân tại \[O\] (do \[OC = OD = R\]) có \[OH\] là đường cao nên \[OH\] cũng là đường phân giác của tam giác. Do đó \[\widehat {COD} = 2 \cdot \widehat {HOD} = 2 \cdot 30^\circ = 60^\circ .\]

Vì vậy số đo cung nhỏ \(CD\) là

Vậy số đo cung lớn \[CD\] là:

Do đó ta chọn phương án D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \(\left( O \right)\) đi qua ba điểm \(A,\,\,B,\,\,C\). Biết \(\widehat {ACB} = 56^\circ ,\) số đo của cung nhỏ \(AB\) là

Xem đáp án » 13/11/2024 1,418

Câu 2:

III. Vận dụng

Cho hình vẽ bên.

Cho hình vẽ bên. Số đo cung lớn  A B  trong hình ngôi sao năm cánh đã cho bằng (ảnh 1)Cho hình vẽ bên. Số đo cung lớn  A B  trong hình ngôi sao năm cánh đã cho bằng (ảnh 2)

Số đo cung lớn \[AB\] trong hình ngôi sao năm cánh đã cho bằng

Xem đáp án » 13/11/2024 346

Câu 3:

Cho tam giác \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( {O;{\rm{ }}R} \right)\], đường cao \[AH\], biết \[AB = 12{\rm{ cm}}\], \[AC = 15\,\,{\rm{cm}}\], \[AH = 6\,\,{\rm{cm}}\]. Đường kính của đường tròn \[\left( O \right)\] bằng

Xem đáp án » 13/11/2024 240

Câu 4:

Cho tam giác nhọn \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\] và gọi\[M\] là trung điểm \[BC\]. Cho các khẳng định sau:

(i) \(OM \bot BC\).

(ii) \(OM\,{\rm{//}}\,AH\).

(iii) \(HM = \frac{{HF}}{2}\).

Có bao nhiêu khẳng định đúng trong các khẳng định trên?

Xem đáp án » 13/11/2024 236

Câu 5:

Cho tam giác nhọn \[ABC\] có 3 đỉnh nằm trên đường tròn \[\left( O \right)\], đường kính \[BD\] . Biết \(\widehat {BAC} = 45^\circ \). Số đo của góc \[\widehat {CBD}\] là

Xem đáp án » 13/11/2024 208

Câu 6:

II. Thông hiểu

Cho đường tròn \(\left( O \right)\) đi qua hai điểm \(A,\,\,B\). Biết \(\widehat {AOB} = 100^\circ \) thì số đo của cung lớn \(AB\) là

Xem đáp án » 13/11/2024 192

Câu 7:

Trong một đường tròn, số đo cung lớn bằng

Xem đáp án » 13/11/2024 189
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua