Câu hỏi:

13/11/2024 299

Cho tam giác nhọn \[ABC\] có 3 đỉnh nằm trên đường tròn \[\left( O \right)\], đường kính \[BD\]. Biết \(\widehat {BAC} = 45^\circ \). Số đo của góc \[\widehat {CBD}\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho tam giác nhọn  A B C  có 3 đỉnh nằm trên đường tròn  ( O ) , đường kính  B D . Biết  ˆ B A C = 45 ∘ . Số đo của góc  ˆ C B D  là (ảnh 1)

Đường tròn \[\left( O \right)\] có \[\widehat {CDB}\] và \[\widehat {CAB}\] là hai góc nội tiếp cùng chắn cung \[CB\] nên \(\widehat {CDB} = \widehat {CAB} = 45^\circ \).

Do \[\widehat {DCB}\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {DCB} = 90^\circ \).

Xét \(\Delta DCB\) có: \(\widehat {CBD} + \widehat {CDB} + \widehat {DCB} = 180^\circ \) (tổng ba góc của một tam giác)

Suy ra \(\widehat {CBD} = 180^\circ - \widehat {CDB} - \widehat {DCB} = 180^\circ - 45^\circ - 90^\circ = 45^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho tam giác  A B C  nhọn có  ˆ B A C = 60 ∘ . Vẽ đường tròn đường kính  B C  tâm  O  cắt  A B ,  A C  lần lượt tại  D  và  E . Số đo góc  ˆ O D E  là (ảnh 1)

Góc \[BDC\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {BDC} = 90^\circ \).

Suy ra \(\widehat {ADC} = 180^\circ - \widehat {BDC} = 180^\circ - 90^\circ = 90^\circ \) hay tam giác \[ADC\] vuông tại \[D\].

Suy ra \(\widehat {ACD} = 90^\circ - \widehat {CAD} = 90^\circ - 60^\circ = 30^\circ \).

Vì \[\widehat {EOD}\] và \[\widehat {ECD}\] là góc ở tâm và góc nội tiếp cùng chắn cung \[ED\] của \[\left( O \right)\] nên:

\(\widehat {EOD} = 2\widehat {ECD} = 2 \cdot 30^\circ = 60^\circ \).

Mà tam giác \[EOD\] cân tại \[O\], suy ra tam giác \[EOD\] là tam giác đều.

Vậy \(\widehat {EDO} = 60^\circ \).

Lời giải

Đáp án đúng là: A

Cho  ( O ) , đường kính  A B , điểm  D  thuộc đường tròn sao cho  ˆ D A B = 50 ∘ . Gọi  E  là điểm đối xứng với  A  qua  D . Số đo góc  A E B  bằng (ảnh 1)

Xét \[\left( O \right)\] có \[\;\widehat {BDA} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn) nên \[BD \bot \;EA\] mà \[D\] là trung điểm \[EA.\]

Suy ra \[\Delta BEA\] có \[BD\] vừa là đường cao vừa là đường trung tuyến, do đó \[\Delta BAE\] cân tại \[B\].

Vậy \(\widehat {BEA} = \widehat {BAD} = 50^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP