Câu hỏi:

13/11/2024 239

Cho tam giác nhọn \[ABC\] có 3 đỉnh nằm trên đường tròn \[\left( O \right)\], đường kính \[BD\]. Biết \(\widehat {BAC} = 45^\circ \). Số đo của góc \[\widehat {CBD}\] là

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho tam giác nhọn  A B C  có 3 đỉnh nằm trên đường tròn  ( O ) , đường kính  B D . Biết  ˆ B A C = 45 ∘ . Số đo của góc  ˆ C B D  là (ảnh 1)

Đường tròn \[\left( O \right)\] có \[\widehat {CDB}\] và \[\widehat {CAB}\] là hai góc nội tiếp cùng chắn cung \[CB\] nên \(\widehat {CDB} = \widehat {CAB} = 45^\circ \).

Do \[\widehat {DCB}\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {DCB} = 90^\circ \).

Xét \(\Delta DCB\) có: \(\widehat {CBD} + \widehat {CDB} + \widehat {DCB} = 180^\circ \) (tổng ba góc của một tam giác)

Suy ra \(\widehat {CBD} = 180^\circ - \widehat {CDB} - \widehat {DCB} = 180^\circ - 45^\circ - 90^\circ = 45^\circ \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác \[ABC\] nhọn có \(\widehat {BAC} = 60^\circ \). Vẽ đường tròn đường kính \[BC\] tâm \[O\] cắt \[AB\], \[AC\] lần lượt tại \[D\] và \[E\]. Số đo góc \(\widehat {ODE}\) là

Xem đáp án » 13/11/2024 3,264

Câu 2:

Cho tam giác \[ABC\] nhọn có ba đỉnh nằm trên đường tròn \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\]. Khẳng định nào sau đây là đúng?

Xem đáp án » 13/11/2024 1,619

Câu 3:

Cho \[\left( O \right)\], đường kính \[AB\], điểm \[D\] thuộc đường tròn sao cho \[\widehat {DAB} = 50^\circ \]. Gọi \[E\] là điểm đối xứng với \[A\] qua \[D\]. Số đo góc \[AEB\] bằng

Xem đáp án » 13/11/2024 1,456

Câu 4:

Cho tam giác \[ABC\] có ba góc nhọn, đường cao \[AH\] và nội tiếp đường tròn tâm \[\left( O \right)\], đường kính \[AM\]. Số đo góc \(\widehat {ABM}\) là

Xem đáp án » 13/11/2024 1,205

Câu 5:

III. Vận dụng

Cho tam giác nhọn \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\] và gọi\[M\] là trung điểm \[BC\]. Cho các khẳng định sau:

(i) \(OM \bot BC\).

(ii) \(OM\,{\rm{//}}\,AH\).

(iii) \(HM = \frac{{HF}}{2}\).

Có bao nhiêu khẳng định đúng trong các khẳng định trên?

Xem đáp án » 13/11/2024 1,089

Câu 6:

II. Thông hiểu

Cho đường tròn \[\left( O \right)\] và điểm \[I\] nằm ngoài \[\left( O \right)\]. Từ điểm \[I\] kẻ hai dây cung \[AB\] và \[CD\] \[(A\] nằm giữa \[I\] và \[B\], \[C\] nằm giữa \[I\] và \[D\]). Tích \[IA \cdot IB\] bằng

Xem đáp án » 13/11/2024 715

Câu 7:

Trong các hình dưới đây, hình biểu diễn góc nội tiếp là

Trong các hình dưới đây, hình biểu diễn góc nội tiếp là (ảnh 1)

Xem đáp án » 13/11/2024 473
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua