Câu hỏi:
13/11/2024 390Cho tam giác \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( {O;{\rm{ }}R} \right)\], đường cao \[AH\], biết \[AB = 12{\rm{ cm}}\], \[AC = 15\,\,{\rm{cm}}\], \[AH = 6\,\,{\rm{cm}}\]. Đường kính của đường tròn \[\left( O \right)\] bằng
Quảng cáo
Trả lời:
Đáp án đúng là: D
Kẻ đường kính \[AD\] của đường tròn \(\left( O \right)\).
Xét đường tròn \[\left( O \right)\] có
\(\widehat {ACB} = \widehat {ADB}\) (hai góc nội tiếp cùng chắn cung \[AB\])
\(\widehat {ABD} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
Xét \[\Delta ACH\] và \[\Delta ADB\] có: \(\widehat {AHC} = \widehat {ABD} = 90^\circ ,\) \(\widehat {ACH} = \widehat {ADB}\)
Do đó (g.g).
Suy ra \(\frac{{AC}}{{AD}} = \frac{{AH}}{{AB}}\) nên \(AD = \frac{{AB \cdot AC}}{{AH}} = \frac{{12 \cdot 15}}{6} = 30\,\,({\rm{cm}}).\)
Vậy đường kính của đường tròn là 30 cm.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Góc \[BDC\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {BDC} = 90^\circ \).
Suy ra \(\widehat {ADC} = 180^\circ - \widehat {BDC} = 180^\circ - 90^\circ = 90^\circ \) hay tam giác \[ADC\] vuông tại \[D\].
Suy ra \(\widehat {ACD} = 90^\circ - \widehat {CAD} = 90^\circ - 60^\circ = 30^\circ \).
Vì \[\widehat {EOD}\] và \[\widehat {ECD}\] là góc ở tâm và góc nội tiếp cùng chắn cung \[ED\] của \[\left( O \right)\] nên:
\(\widehat {EOD} = 2\widehat {ECD} = 2 \cdot 30^\circ = 60^\circ \).
Mà tam giác \[EOD\] cân tại \[O\], suy ra tam giác \[EOD\] là tam giác đều.
Vậy \(\widehat {EDO} = 60^\circ \).
Lời giải
Đáp án đúng là: A
Xét \[\left( O \right)\] có \[\;\widehat {BDA} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn) nên \[BD \bot \;EA\] mà \[D\] là trung điểm \[EA.\]
Suy ra \[\Delta BEA\] có \[BD\] vừa là đường cao vừa là đường trung tuyến, do đó \[\Delta BAE\] cân tại \[B\].
Vậy \(\widehat {BEA} = \widehat {BAD} = 50^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.