Câu hỏi:

13/11/2024 390

Cho tam giác \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( {O;{\rm{ }}R} \right)\], đường cao \[AH\], biết \[AB = 12{\rm{ cm}}\], \[AC = 15\,\,{\rm{cm}}\], \[AH = 6\,\,{\rm{cm}}\]. Đường kính của đường tròn \[\left( O \right)\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tam giác  A B C  có ba đỉnh nằm trên đường tròn  ( O ; R ) , đường cao  A H , biết  A B = 12 c m ,  A C = 15 c m ,  A H = 6 c m . Đường kính của đường tròn  ( O )  bằng (ảnh 1)

Kẻ đường kính \[AD\] của đường tròn \(\left( O \right)\).

Xét đường tròn \[\left( O \right)\] có 

\(\widehat {ACB} = \widehat {ADB}\)  (hai góc nội tiếp cùng chắn cung \[AB\])

\(\widehat {ABD} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

Xét \[\Delta ACH\] và \[\Delta ADB\] có: \(\widehat {AHC} = \widehat {ABD} = 90^\circ ,\) \(\widehat {ACH} = \widehat {ADB}\)

Do đó (g.g).

Suy ra \(\frac{{AC}}{{AD}} = \frac{{AH}}{{AB}}\) nên \(AD = \frac{{AB \cdot AC}}{{AH}} = \frac{{12 \cdot 15}}{6} = 30\,\,({\rm{cm}}).\)

Vậy đường kính của đường tròn là 30 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho tam giác  A B C  nhọn có  ˆ B A C = 60 ∘ . Vẽ đường tròn đường kính  B C  tâm  O  cắt  A B ,  A C  lần lượt tại  D  và  E . Số đo góc  ˆ O D E  là (ảnh 1)

Góc \[BDC\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {BDC} = 90^\circ \).

Suy ra \(\widehat {ADC} = 180^\circ - \widehat {BDC} = 180^\circ - 90^\circ = 90^\circ \) hay tam giác \[ADC\] vuông tại \[D\].

Suy ra \(\widehat {ACD} = 90^\circ - \widehat {CAD} = 90^\circ - 60^\circ = 30^\circ \).

Vì \[\widehat {EOD}\] và \[\widehat {ECD}\] là góc ở tâm và góc nội tiếp cùng chắn cung \[ED\] của \[\left( O \right)\] nên:

\(\widehat {EOD} = 2\widehat {ECD} = 2 \cdot 30^\circ = 60^\circ \).

Mà tam giác \[EOD\] cân tại \[O\], suy ra tam giác \[EOD\] là tam giác đều.

Vậy \(\widehat {EDO} = 60^\circ \).

Lời giải

Đáp án đúng là: A

Cho  ( O ) , đường kính  A B , điểm  D  thuộc đường tròn sao cho  ˆ D A B = 50 ∘ . Gọi  E  là điểm đối xứng với  A  qua  D . Số đo góc  A E B  bằng (ảnh 1)

Xét \[\left( O \right)\] có \[\;\widehat {BDA} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn) nên \[BD \bot \;EA\] mà \[D\] là trung điểm \[EA.\]

Suy ra \[\Delta BEA\] có \[BD\] vừa là đường cao vừa là đường trung tuyến, do đó \[\Delta BAE\] cân tại \[B\].

Vậy \(\widehat {BEA} = \widehat {BAD} = 50^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP