Cho \[\Delta ABC\] vuông tại \[A\], có \[AB = 6{\rm{ cm}}\] và \[AC = 8{\rm{ cm}}\] ngoại tiếp đường tròn \[\left( {I;{\rm{ }}r} \right)\]. Bán kính \[r\] của đường tròn là
A. 1 cm.
B. 2 cm.
C. 3 cm.
D. 4 cm.
Quảng cáo
Trả lời:

Đáp án đúng là: B
Đường tròn \[\left( {I;{\rm{ }}r} \right)\] tiếp xúc với các cạnh \[AB,{\rm{ }}AC,{\rm{ }}BC\] theo thứ tự \[M,{\rm{ }}N,{\rm{ }}P\].
Ta có: \({S_{AIB}} = \frac{1}{2}IM \cdot AB = \frac{1}{2} \cdot r \cdot AB & \left( 1 \right)\)
\({S_{AIC}} = \frac{1}{2}IN \cdot AC = \frac{1}{2} \cdot r \cdot AC & \left( 2 \right)\)
\({S_{BIC}} = \frac{1}{2}r.BC & & & \left( 3 \right)\)
Cộng vế theo vế ở các biểu thức \(\left( 1 \right),\,\,\left( 2 \right),\,\,\left( 3 \right)\), ta được:
\(\frac{{{S_{AIB}} + {S_{AIC}} + {S_{BIC}}}}{{{S_{ABC}}}} = \frac{1}{2}r\left( {AB + AC + BC} \right)\).
Mà \({S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.6.8 = 24\) (cm2), \(BC = \sqrt {{6^2} + {8^2}} = 10\) (cm)
Nên ta có: \(24 = \frac{1}{2}r \cdot \left( {6 + 8 + 10} \right)\) hay \(\frac{1}{2}r \cdot 12 = 24\).
Do đó \(r = 2\,\,{\rm{cm}}\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(a\sqrt 2 \).
B. \(\frac{{a\sqrt 2 }}{2}\).
C. \(\frac{a}{2}\).
D. \(\frac{{a\sqrt 3 }}{2}\).
Lời giải
Đáp án đúng là: C
Gọi \[O\] là tâm của hình vuông \[ABCD\].
Gọi \[E;{\rm{ }}F;{\rm{ }}K;{\rm{ }}G\] lần lượt là trung điểm của \[AD,{\rm{ }}DC,{\rm{ }}BC,{\rm{ }}AB\].
Khi đó ta có \[OE = OF = OK = OG = \;\frac{a}{2}\] hay \[O\] là tâm đường tròn nội tiếp hình vuông \[ABCD\].
Vậy bán kính đường tròn nội tiếp hình vuông là \(R = \frac{a}{2}\).
Câu 2
A. \(30^\circ \).
B. \(45^\circ \).
C. \(60^\circ \).
D. \(15^\circ \).
Lời giải
Đáp án đúng là: D
Vì \[AC\] bằng cạnh của hình vuông nội tiếp \[\left( O \right)\] nên số đo cung \[AC = 90^\circ \].
Vì \[BC\] bằng cạnh của tam giác đều nội tiếp \[\left( O \right)\] nên số đo cung \[BC = 120^\circ \].
Từ đó suy ra số đo cung \[AB\] bằng \[120^\circ --90^\circ = 30^\circ \].
Vì góc \[ACB\] là góc nội tiếp chắn cung \[AB\] nên \(\widehat {ACB} = \frac{{30^\circ }}{2} = 15^\circ \).
Vậy \(\widehat {ACB} = 15^\circ \).
Câu 3
A. \(\frac{{a\sqrt 3 }}{6}\).
B. \(\frac{{a\sqrt 3 }}{3}\).
C. \(\frac{a}{6}\).
D. \(\frac{a}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(BD = \frac{{BC + AB - AC}}{2}\).
B. \(BC = \frac{{BD + AB - AC}}{2}\).
C. \(BD = \frac{{BC + AB + AC}}{2}\).
D. \(BD = \frac{{BC - AB + AC}}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. 26 cm.
B. 13 cm.
C. \(\frac{{13}}{2}\,\,{\rm{cm}}\).
D. 6 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[16,12{\rm{ c}}{{\rm{m}}^{\rm{2}}}{\rm{.}}\]
B. \[16,84{\rm{ c}}{{\rm{m}}^{\rm{2}}}{\rm{.}}\]
C. \[{\rm{24,15 c}}{{\rm{m}}^{\rm{2}}}{\rm{.}}\]
D. \[{\rm{24,05 c}}{{\rm{m}}^{\rm{2}}}{\rm{.}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.