Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi \[O\] là tâm của hình vuông \[ABCD\].
Gọi \[E;{\rm{ }}F;{\rm{ }}K;{\rm{ }}G\] lần lượt là trung điểm của \[AD,{\rm{ }}DC,{\rm{ }}BC,{\rm{ }}AB\].
Khi đó ta có \[OE = OF = OK = OG = \;\frac{a}{2}\] hay \[O\] là tâm đường tròn nội tiếp hình vuông \[ABCD\].
Vậy bán kính đường tròn nội tiếp hình vuông là \(R = \frac{a}{2}\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Vì \[AC\] bằng cạnh của hình vuông nội tiếp \[\left( O \right)\] nên số đo cung \[AC = 90^\circ \].
Vì \[BC\] bằng cạnh của tam giác đều nội tiếp \[\left( O \right)\] nên số đo cung \[BC = 120^\circ \].
Từ đó suy ra số đo cung \[AB\] bằng \[120^\circ --90^\circ = 30^\circ \].
Vì góc \[ACB\] là góc nội tiếp chắn cung \[AB\] nên \(\widehat {ACB} = \frac{{30^\circ }}{2} = 15^\circ \).
Vậy \(\widehat {ACB} = 15^\circ \).
Lời giải
Đáp án đúng là: A
Gọi \[E,{\rm{ }}F\] là tiếp điểm của đường tròn \[\left( I \right)\] với các cạnh \[AB,{\rm{ }}AC\].
Theo tính chất của hai tiếp tuyến cắt nhau, ta có: \[AE = AF;{\rm{ }}BE = BD;\,\,CD = CF\].
Do đó \[2BD = BD + BE\]\[ = BC--CD + AB--AE\]
\[ = BC + AB--\left( {CD + AE} \right)\]\[ = BC + AB--\left( {CF + AF} \right)\]
\[ = BC + AB--AC\].
Suy ra \[BD = \frac{{BC + AB - AC}}{2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.