Câu hỏi:

13/11/2024 648

III. Vận dụng

Cho \[\Delta ABC\] vuông tại \[A\], \(\widehat {BAC} = 90^\circ \,\,\left( {AB{\rm{ }} \le {\rm{ }}AC} \right)\). Đường tròn \[\left( I \right)\] nội tiếp tam giác \[ABC\] tiếp xúc với \[BC\] tại \[D\]. Kết quả nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho  Δ A B C  vuông tại  A ,  ˆ B A C = 90 ∘ ( A B ≤ A C ) . Đường tròn  ( I )  nội tiếp tam giác  A B C  tiếp xúc với  B C  tại  D . Kết quả nào sau đây là đúng? (ảnh 1)

Gọi \[E,{\rm{ }}F\] là tiếp điểm của đường tròn \[\left( I \right)\] với các cạnh \[AB,{\rm{ }}AC\].

Theo tính chất của hai tiếp tuyến cắt nhau, ta có: \[AE = AF;{\rm{ }}BE = BD;\,\,CD = CF\].

Do đó \[2BD = BD + BE\]\[ = BC--CD + AB--AE\]

\[ = BC + AB--\left( {CD + AE} \right)\]\[ = BC + AB--\left( {CF + AF} \right)\]

\[ = BC + AB--AC\].

Suy ra \[BD = \frac{{BC + AB - AC}}{2}\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

II. Thông hiểu

Đường tròn nội tiếp hình vuông cạnh \[a\] có bán kính là

Lời giải

Đáp án đúng là: C

Gọi \[O\] là tâm của hình vuông \[ABCD\].

Gọi \[E;{\rm{ }}F;{\rm{ }}K;{\rm{ }}G\] lần lượt là trung điểm của \[AD,{\rm{ }}DC,{\rm{ }}BC,{\rm{ }}AB\].

Đường tròn nội tiếp hình vuông cạnh  a  có bán kính là (ảnh 1)

Khi đó ta có \[OE = OF = OK = OG = \;\frac{a}{2}\] hay \[O\] là tâm đường tròn nội tiếp hình vuông \[ABCD\].

Vậy bán kính đường tròn nội tiếp hình vuông là \(R = \frac{a}{2}\).

Lời giải

Đáp án đúng là: D

Cho  ( O ; 4 )  có dây  A C  bằng cạnh hình vuông nội tiếp và dây  B C  bằng cạnh tam giác đều nội tiếp đường tròn đó (điểm  C  và  A  nằm cùng phía với  B O ). Số đo góc  A C B  là (ảnh 1)

Vì \[AC\] bằng cạnh của hình vuông nội tiếp \[\left( O \right)\] nên số đo cung \[AC = 90^\circ \].

Vì \[BC\] bằng cạnh của tam giác đều nội tiếp \[\left( O \right)\] nên số đo cung \[BC = 120^\circ \].

Từ đó suy ra số đo cung \[AB\] bằng \[120^\circ --90^\circ = 30^\circ \].

Vì góc \[ACB\] là góc nội tiếp chắn cung \[AB\] nên \(\widehat {ACB} = \frac{{30^\circ }}{2} = 15^\circ \).

Vậy \(\widehat {ACB} = 15^\circ \).

Câu 3

Đường tròn ngoại tiếp tam giác đều cạnh \(a\) có bán kính bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay