Câu hỏi:
13/11/2024 29Một lục giác đều và một ngũ giác đều chung cạnh \[AD\] (như hình vẽ).
Số đo góc \(BAC\) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Theo công thức tính góc của đa giác đều, ta có:
\(\widehat {ADB} = \frac{{180^\circ \left( {6 - 2} \right)}}{6} = 120^\circ \).
Tam giác \[DBA\] cân tại \[D\] nên \(\widehat {DAB} = \frac{{180^\circ - 120^\circ }}{2} = 30^\circ \).
Tương tự, ta tính được \(\widehat {DAC} = 36^\circ \).
Vậy \(\widehat {BAC} = \widehat {DAB} + \widehat {DAC} = 30^\circ + 36^\circ = 66^\circ \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
III. Vận dụng
Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai?
Câu 2:
Cho các hình: Hình chữ nhật, hình thoi, hình vuông, tam giác cân, tam giác đều.
Trong các hình trên, có bao nhiêu đa giác giác đều?
Câu 3:
Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì điểm \[C\] biến thành điểm
Câu 4:
I. Nhận biết
Cho các hình dưới đây:
Trong các hình trên, hình nào có dạng là đa giác đều?
Câu 5:
Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào?
về câu hỏi!