Câu hỏi:

14/11/2024 147 Lưu

Phương trình \(\sqrt 2 {x^2} + x - \sqrt 2 + 1 = 0\) có nghiệm là bao nhiêu?

A. \({x_1} = - 1;\,\,{x_2} = \frac{{\sqrt 2 - 1}}{{\sqrt 2 }}.\)

B. \({x_1} = 1;\,\,{x_2} = \frac{{ - \sqrt 2 - 1}}{{\sqrt 2 }}.\)

C. \({x_1} = - 1;\,\,{x_2} = \frac{{ - \sqrt 2 + 1}}{{\sqrt 2 }}.\)

D. \({x_1} = 1;\,\,{x_2} = \frac{{\sqrt 2 + 1}}{{\sqrt 2 }}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Phương trình \(\sqrt 2 {x^2} + x - \sqrt 2 + 1 = 0\) có \(a = \sqrt 2 \,;\,\,b = 1\,;\,\,c = - \sqrt 2 + 1\).

Ta có \(a - b + c = \sqrt 2 - 1 + \left( { - \sqrt 2 + 1} \right) = 0\) nên phương trình có hai nghiệm: \({x_1} = - 1;\,\,{x_2} = \frac{{\sqrt 2 - 1}}{{\sqrt 2 }}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Phương trình \( - 2{x^2} - 6x - 1 = 0\) có \(\Delta = {\left( { - 6} \right)^2} - 4.\left( { - 2} \right).\left( { - 1} \right) = 28 > 0\) nên phương trình có hai nghiệm \({x_1};\,{x_2}\)

Theo định lí Viète ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 3\\{x_1}{x_2} = \frac{1}{2}\end{array} \right.\)

Ta có \(N = \frac{1}{{{x_1} + 3}} + \frac{1}{{{x_2} + 3}} = \frac{{{x_1} + {x_2} + 6}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}} = \frac{{ - 3 + 6}}{{\frac{1}{2} + 3.\left( { - 3} \right) + 9}} = 6.\)

Câu 2

A. \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)
B. \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)
C. \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{b}{a}\\{x_1}{x_2} = \frac{a}{c}\end{array} \right..\)
D. \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{b}{a}\\{x_1}{x_2} = - \frac{c}{a}\end{array} \right..\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Định lí Viète: Nếu \({x_1};\,{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\) thì \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({x^2} + 6x - 8 = 0.\)

B. \({x^2} - 6x - 8 = 0.\)

C. \({x^2} + 6x + 8 = 0.\)

D. \( - {x^2} + 6x - 8 = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({x^2} + 6x + 7 = 0.\)

B. \({x^2} - 6x + 7 = 0.\)

C. \({x^2} - 7x + 6 = 0.\)

D. \({x^2} + 7x + 6 = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP