Câu hỏi:
14/11/2024 861Cho phương trình \({x^2} - 4mx + 4{m^2} - 2 = 0\,\,\,\left( 1 \right)\) có hai nghiệm phân biệt là \({x_1};\,\,{x_2}\). Giá trị của biểu thức \(P = x_1^2 + 4m{x_2} - 12{m^2} - 6\) là
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có \(\Delta ' = {\left( {2m} \right)^2} - \left( {4{m^2} - 2} \right) = 2 > 0\) với mọi \(m.\)
Do đó, phương trình \(\left( 1 \right)\) luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi \(m.\).
Khi đó, theo định lý Viète: \({x_1} + {x_2} = 4m\)
\(P = x_1^2 + 4m{x_2} - 12{m^2} - 6\)
\( = \left( {x_1^2 - 4m{x_1} + 4{m^2} - 2} \right) + 4m\left( {{x_1} + {x_2}} \right) - 16{m^2} - 4\)
\( = 0 + 4m \cdot 4m - 16{m^2} - 4 = - 4.\)
Vậy \(P = - 4.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Điều kiện để phương trình có hai nghiệm \({x_1},\,{x_2}\) là \(\Delta ' \ge 0\) hay \({m^2} - 4 \ge 0\)
Khi đó \({m^2} \ge 4\) nên \(\left| m \right| \ge 2\,\,\,\left( 1 \right).\)
Ta có \(\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} = 3\)
\(x_1^2 + x_2^2 = 3{x_1}{x_2}\)
\({\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 3{x_1}{x_2}\)
\({\left( {{x_1} + {x_2}} \right)^2} = 5{x_1}{x_2}\,\,\,\left( 2 \right)\)
Theo định lí Viète ta có \({x_1} + {x_2} = - 2m,\,\,{x_1}{x_2} = 4.\)
Khi đó \(\left( 2 \right)\) trở thành \(4{m^2} = 20\) hay \(m = \pm \sqrt 5 \) (thỏa mãn \(\left( 1 \right)\)).
Vậy \(m = \pm \sqrt 5 \) là giá trị cần tìm.
Lời giải
Đáp án đúng là: A
Phương trình đã cho có hai nghiệm trái dấu khi \(P < 0\) hay \( - m < 0\) hay \(m > 0.\)</>
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.