Câu hỏi:

16/11/2024 83

III. Vận dụng

Tứ giác \[ABCD\] nội tiếp đường tròn có hai cạnh đối \[AB\] và \[CD\] cắt nhau tại \[M\] và \(\widehat {BAD} = 70^\circ \). Số đo \(\widehat {BCM}\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Tứ giác  A B C D  nội tiếp đường tròn có hai cạnh đối  A B  và  C D  cắt nhau tại  M  và  ˆ B A D = 70 ∘ . Số đo  ˆ B C M  là (ảnh 1)

Tứ giác \[ABCD\] nội tiếp nên ta có:

\(\widehat {DAB} + \widehat {BCD} = 180^\circ \) nên \(\widehat {BCD} = 180^\circ - 70^\circ = 110^\circ \).

Mà \(\widehat {BCD} + \widehat {BCM} = 180^\circ \) (hai góc kề bù)

Do đó \(\widehat {BCM} = 180^\circ - 110^\circ = 70^\circ \).

Vậy \(\widehat {BCM} = 70^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Khi tứ giác \[MNPQ\] nội tiếp đường tròn, và có \(\widehat M = 90^\circ \). Khi đó, góc \[P\] bằng

Lời giải

Đáp án đúng là: A

Khi tứ giác  M N P Q  nội tiếp đường tròn, và có  ˆ M = 90 ∘ . Khi đó, góc  P  bằng (ảnh 1)

Tứ giác \[MNPQ\] nội tiếp đường tròn nên \(\widehat M + \widehat P = 180^\circ \) hay \(\widehat P = 180^\circ - \widehat M = 180^\circ - 90^\circ = 90^\circ \).

Lời giải

Đáp án đúng là: C

Tổng 6 góc của lục giác đều \[ABCDEF\] bằng tổng các góc trong hai tứ giác \[ABCD\] và \[ABEF.\]

Suy ra tổng 6 góc của lục giác đều \[ABCDEF\] bằng \[2 \cdot 360^\circ = 720^\circ .\]

Do tất cả các góc của lục giác đều bằng nhau nên số đo mỗi góc của lục giác đều bằng \[\frac{{720^\circ }}{6} = 120^\circ .\]

Ta có \[AF = AB\] (vì \[ABCDEF\] là lục giác đều) và \[OB = OF\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]

Suy ra \[AO\] là đường trung trực của đoạn BF.

Vì \[AF = AB\] (chứng minh trên) nên tam giác \[ABF\] cân tại \[A.\]

Do đó \[AO\] vừa là đường trung trực, vừa là đường phân giác của tam giác \[ABF.\]

Vì vậy \[\widehat {OAB} = \frac{{\widehat {BAF}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]

Ta có \[OB = OA = 4{\rm{ cm}}\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]

Suy ra tam giác \[OAB\] cân tại O, mà \[\widehat {OAB} = 60^\circ \] (chứng minh trên).

Do đó tam giác \[OAB\] đều, suy ra \[AB = OB = OA = 4{\rm{ cm}}.\]

Vì vậy \[BC = CD = DE = EF = FA = AB = 4{\rm{ cm}}\] (vì \[ABCDEF\] là lục giác đều).

Vậy số đo mỗi cạnh của lục giác đều \[ABCDEF\] đều bằng nhau và bằng \[4{\rm{ cm}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

I. Nhận biết

Đa giác đều trong các hình dưới đây là

Đa giác đều trong các hình dưới đây là (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay