Câu hỏi:
16/11/2024 110Cho ngũ giác đều \[MNPQR\] có tâm \[O.\] Phép quay nào với tâm \[O\] biến ngũ giác đều \[MNPQR\] thành chính nó?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Các phép quay giữ nguyên ngũ giác đều \[MNPQR\] là:
⦁ Năm phép quay thuận chiều \[\alpha ^\circ \] tâm \[O\] với \[\alpha ^\circ \] lần lượt nhận các giá trị:
\[\alpha _1^o = \frac{{360^\circ }}{5} = 72^\circ ;\,\,\alpha _2^o = \frac{{2 \cdot 360^\circ }}{5} = 144^\circ ;\,\,\alpha _3^o = \frac{{3 \cdot 360^\circ }}{5} = 216^\circ ;\]
\[\alpha _4^o = \frac{{4 \cdot 360^\circ }}{5} = 288^\circ ;\,\,\alpha _5^o = \frac{{5 \cdot 360^\circ }}{5} = 360^\circ .\]
⦁ Ba phép quay ngược chiều \[\alpha ^\circ \] tâm \[O\] với \[\alpha ^\circ \] lần lượt nhận các giá trị:
\[\alpha _1^o = \frac{{360^\circ }}{5} = 72^\circ ;\,\,\alpha _2^o = \frac{{2 \cdot 360^\circ }}{5} = 144^\circ ;\,\,\alpha _3^o = \frac{{3 \cdot 360^\circ }}{5} = 216^\circ ;\]
\[\alpha _4^o = \frac{{4 \cdot 360^\circ }}{5} = 288^\circ ;\,\,\alpha _5^o = \frac{{5 \cdot 360^\circ }}{5} = 360^\circ .\]
Do đó ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Khi tứ giác \[MNPQ\] nội tiếp đường tròn, và có \(\widehat M = 90^\circ \). Khi đó, góc \[P\] bằng
Câu 2:
Cho tứ giác \[ABCD\] nội tiếp một đường tròn \[\left( O \right)\]. Biết \(\widehat {BOD} = 140^\circ \). Số đo góc \(\widehat {BCD}\) là
Câu 3:
Cho đường tròn \[\left( O \right)\]. Trên \[\left( O \right)\] lấy ba điểm \[A,{\rm{ }}B,{\rm{ }}D\] sao cho \(\widehat {AOB} = 120^\circ \), \[AD = BD\]. Khi đó tam giác \[ABD\] là
Câu 4:
II. Thông hiểu
Phép quay với \[O\] là tâm biến tam giác đều thành chính nó là phép quay thuận chiều một góc:
Câu 5:
Cho lục giác đều \[ABCDEF\] tâm \(O\) biết \[OA = 4{\rm{ cm}}.\] Độ dài mỗi cạnh của lục giác đều \[ABCDEF\] là bao nhiêu?
Câu 7:
Cho tam giác \[ABC\] có ba góc nhọn, đường cao \[AH\] và nội tiếp đường tròn tâm \[\left( O \right)\], đường kính \[AM\]. Gọi \[N\] là giao điểm của \[AH\] với đường tròn \[\left( O \right)\]. Tứ giác \[BCMN\] là
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 02
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận