Câu hỏi:

19/08/2025 14,229 Lưu

Giải bài toán bằng cách lập hệ phương trình.

Lớp 9A và lớp 9B có tổng cộng học sinh. Trong đợt thu nhặt giấy báo cũ thực hiện kế hoạch nhỏ, mỗi lớp có 3 bạn góp được , các bạn còn lại mỗi bạn góp Tính số học sinh của mỗi lớp, biết lớp 9B góp nhiều hơn lớp 9A là giấy báo cũ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

 Gọi là số học sinh của lớp 9A, là số học sinh của lớp 9B .

Theo đề bài, tổng số học sinh hai lớp là học sinh nên ta có phương trình

Lớp 9A góp được số giấy báo cũ là .

Lớp 9B góp được số giấy báo cũ là .

Mà lớp 9B góp nhiều hơn lớp 9A giấy báo cũ nên ta có phương trình:

 suy ra  hay .

Từ (1) và (2) ta có hệ phương trình: .

Cộng theo vế hai phương trình ta được , suy ra (TM).

Thay vào phương trình (1), ta được , suy ra  (TM).

Vậy lớp 9A có học sinh, lớp 9B có học sinh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \[AD = x\,\,\left( {x > 0} \right)\].

Ta có tứ giác \[ADME\]\[\widehat {ADE} = \widehat {DAE} = \widehat {AED} = 90^\circ \] nên \[ADME\] là hình chữ nhật. Do đó, \[AD = EM = x.\]

Xét \[\Delta ABC\] và \[\Delta ECM\] có:

\(\widehat A = \widehat {MEC} = 90^\circ \,;\,\,\widehat C\) chung.

Do đó ABC ~ ECM (g.g)

Suy ra \[\frac{{EM}}{{AB}} = \frac{{CE}}{{CA}}\] hay \[\frac{x}{6} = \frac{{CE}}{8}\] suy ra \[CE = \frac{4}{3}x\].

Ta có \[AE = AC - EC = 8 - \frac{4}{3}x\].

Diện tích hình chữ nhật \[ADME\] là:

\[{S_{ADME}} = AD.AE = x\left( {8 - \frac{4}{3}x} \right)\].

Ta có: \[x\left( {8 - \frac{4}{3}x} \right) = - \frac{4}{3}{x^2} + 8x = - \frac{4}{3}\left( {{x^2} - 6x} \right)\]

                            \[ = - \frac{4}{3}\left( {{x^2} - 6x + 9} \right) + 12\]

                            \[ = - \frac{4}{3}{\left( {x - 3} \right)^2} + 12\].

Vì \[{\left( {x - 3} \right)^2} \ge 0\] với mọi \(x \in \mathbb{R}\) nên \[ - \frac{4}{3}{\left( {x - 3} \right)^2} \le 0\] với mọi \(x \in \mathbb{R}\).

Do đó \[ - \frac{4}{3}{\left( {x - 3} \right)^2} + 12 \le 12\] với mọi \(x \in \mathbb{R}\).

Dấu “=” xảy ra khi \[x - 3 = 0\] khi \[x = 3.\]

Khi đó \[D\] là trung điểm của \[AB\].

Suy ra \[M\] là trung điểm của \[BC\].

Do đó, diện tích lớn nhất của \[ADME\] bằng \[{\rm{12 }}{{\rm{m}}^{\rm{2}}}\] khi \[M\] là trung điểm của \[BC\].

Vậy diện tích ao cá lớn nhất mà người đó có thể đào là \[{\rm{12 }}{{\rm{m}}^{\rm{2}}}\] khi \[M\] là trung điểm của \[BC\].

Lời giải

Xét vuông tại có: suy ra

Do là hai tiếp tuyến của đường tròn nên là tia phân giác góc (tính chất hai tiếp tuyến cắt nhau).

Suy ra .

Do đó, nên .

Diện tích hình quạt giới hạn bởi bán kính và cung nhỏ là:

vdt).

Vậy diện tích hình quạt giới hạn bởi bán kính và cung nhỏ  vdt).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP