Câu hỏi:

12/12/2024 189

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau

Cho hàm số \[y = f( x ) có bảng biến thiên như sau (ảnh 1)

Biết đồ thị hàm số \(g\left( x \right) = f\left( {\sqrt {{x^2} + 2x} - x} \right)\) có hai đường tiệm cận ngang là \(y = a\)\(y = b\), trong đó \(a < b\). Tính \(S = a - 100b\).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 2x} - x} \right) = 1\)\(f\left( 1 \right) = 3\), suy ra \(\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } f\left( {\sqrt {{x^2} + 2x} - x} \right) = 3\).

\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 2x} - x} \right) = + \infty \)\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2\), suy ra \(\mathop {\lim }\limits_{x \to - \infty } g\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } f\left( {\sqrt {{x^2} + 2x} - x} \right) = 2\).

Vậy đồ thị hàm số \(g\left( x \right)\)\(2\) đường tiệm cận ngang \(y = 2\)\(y = 3\). Suy ra \(a = 2,\,b = 3\).

Suy ra \(S = a - 100b = - 298\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với một hệ trục toạ độ cho trước (đơn vị đo lấy theo kilômét), ra đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm \[A\left( {800;500;7} \right)\] đến điểm \[B\left( {940;550;9} \right)\] trong 10 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì toạ độ của máy bay sau 5 phút tiếp theo là \(C(x;y;z)\). Tính \(x + y + z\).

Xem đáp án » 12/12/2024 27,172

Câu 2:

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2024;2024} \right]\) để đồ thị hàm số \(y = {x^3} - 3mx + 3\) và đường thẳng \(y = 3x + 1\) có duy nhất một điểm chung?

Xem đáp án » 12/12/2024 1,558

Câu 3:

Cho hình hộp \[ABCD.A'B'C'D'\]. Gọi \(M\), \(N\) lần lượt là các điểm trên đoạn \(AC\)\(C'D\) sao cho, \(DN = \frac{1}{3}DC'\), \(AM = \frac{2}{3}AC\). Khi phân tích \(\overrightarrow {BN} = x.\overrightarrow {BA} + y.\overrightarrow {BC} + z.\overrightarrow {BB'} \) thì giá trị \(x + y + z\) bằng bao nhiêu?

Xem đáp án » 12/12/2024 1,248

Câu 4:

Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ dưới đây:

Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ dưới đây: (ảnh 1)

a) Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\).

b) Hàm số đạt cực tiểu tại \(x = 1\).

c) Đồ thị hàm số cắt trục Oy tại điểm có tọa độ \(\left( {0;1} \right)\).

d) \(2a + 3b + c = 9\).

Xem đáp án » 12/12/2024 494

Câu 5:

Cho hàm số \(f\left( x \right) = {x^3} - 3m{x^2} + 10\), trong đó \(m\) là số nguyên dương. Tìm \(m\) để giá trị nhỏ nhất của hàm số trên nửa khoảng \(\left[ {0; + \infty } \right)\) bằng \(6\).

Xem đáp án » 12/12/2024 265

Câu 6:

Cho hàm số \(y = \frac{{ax + b}}{{cx - 1}}\) có đồ thị như hình vẽ bên dưới. Giá trị của tổng \(S = a + b + c\) bằng

Cho hàm số \(y ={{ax + b}}{{cx - 1}}\) có đồ thị như hình vẽ bên dưới. Giá trị của tổng \(S = a + b + c\) bằng (ảnh 1)

Xem đáp án » 12/12/2024 227

Câu 7:

Thời gian tập nhảy mỗi ngày trong thời gian gần đây của Cô Minh Hiền được thống kê lại ở bảng sau:

Thời gian tập nhảy mỗi ngày trong thời gian gần đây của Cô Minh Hiền được thống kê lại ở bảng sau:   (ảnh 1)

Khoảng biến thiên của mẫu số liệu ghép nhóm là

Xem đáp án » 12/12/2024 204

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store