Câu hỏi:
14/12/2024 9Cho mặt phẳng\[\left( P \right):x + 2y + 2z - 6 = 0\]; \[M\left( {1\,;\,2\,;\,3} \right)\]. Khoảng cách từ \(M\) đến \(\left( P \right)\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
\[d\left( {M,\,\left( P \right)} \right) = \frac{{\left| {1 + 2.2 + 2.3 - 6} \right|}}{{\sqrt {4 + 4 + 1} }} = \frac{5}{3}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian \(t\left( s \right)\) là \(a\left( t \right) = 2t - 7\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\). Biết vận tốc ban đầu bằng \(6{\rm{m/s}}\).
a) Vận tốc tức thời của chất điểm tại thời điểm \(t\left( s \right)\) xác định bởi \(v\left( t \right) = {t^2} - 7t + 10\).
b) Tại thời điểm \(t = 7\left( {\rm{s}} \right)\), vận tốc của chất điểm là \(6\left( {{\rm{m/s}}} \right)\).
c) Độ dịch chuyển của vật trong khoảng thời gian \(1 \le t \le 7\) là \(18{\rm{m}}\).
d) Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là \(t = 7\left( {\rm{s}} \right)\).
Câu 2:
Một người lái xe ô tô đang chạy với vận tốc 20 m/s thì người lái xe phát hiện có hàng rào ngăn đường ở phía trước cách 45 m (tính từ vị trí đầu xe đến hàng rào) vì vậy, người lái xe đạp phanh. Từ thời điểm đó xe chuyển động chậm dần đều với vận tốc \(v\left( t \right) = - 5t + 20\left( {{\rm{m/s}}} \right)\), trong đó \(t\) là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, xe ô tô còn cách hàng rào ngăn cách bao nhiêu mét (tính từ vị trí đầu xe đến hàng rào)?
Câu 3:
Cho hàm số \(y = f\left( x \right)\) liên tục và có đồ thị như hình vẽ sau. Biết diện tích các miền \(A,B,C\) lần lượt là \({S_A} = 2,35,{S_B} = 4,3,{S_C} = 8,35\).
a) \(\int\limits_{ - 3}^2 {f\left( x \right)dx} = 6,65\).
b) \(\int\limits_{ - 1}^5 {\left| {f\left( x \right)} \right|dx = 12,65} \).
c) \(\int\limits_{ - 3}^5 {\left[ {f\left( x \right) + 1} \right]dx} = 7,4\).
d) \(\int\limits_{ - 1}^5 {\left[ {2x + f\left( x \right)} \right]dx} = 16,05\).
Câu 4:
Diện tích hình phẳng giới hạn bởi các đường \[y = {x^2}\] và \[y = 4x - 3\] là
Câu 5:
Ông An xây dựng một sân bóng đá mini hình chữ nhật có chiều rộng 30 m và chiều dài 50 m. Để giảm bởi chi phí cho việc trồng cỏ nhân tạo, ông An chia sân bóng ra làm hai phần (tô đen và không tô đen) như hình vẽ. Phần tô đen gồm hai phần diện tích bằng nhau và đường cong \(AIB\) là một parabol đỉnh I được trồng cỏ nhân tạo với giá 130000 đồng/m2 và phần còn lại được trồng với giá 90000 đồng/m2. Hỏi ông An phải trả bao nhiêu tiền (triệu đồng) để trồng cỏ nhân tạo cho sân bóng đá.
Câu 6:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\). Gọi \(F\left( x \right),G\left( x \right)\) là hai nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\) thỏa mãn \(F\left( 2 \right) + G\left( 2 \right) = 8\) và \(F\left( 0 \right) + G\left( 0 \right) = - 2\). Khi đó \(\int\limits_0^{16} f \left( {\frac{x}{8}} \right){\rm{d}}x\) bằng bao nhiêu?
Câu 7:
Nếu \(\int\limits_1^2 {f(x){\rm{d}}x} = 5\) và \(\int\limits_2^3 {f(x){\rm{d}}x} = - 2\) thì \(\int\limits_1^3 {f(x){\rm{d}}x} \) bằng
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!