Câu hỏi:

14/12/2024 24

Trong không gian \(Oxyz\), cho hai điểm \(A\left( {0;0;1} \right),B\left( {1;2;3} \right)\). Mặt phẳng đi qua \(A\) và vuông góc với \(AB\) có phương trình là

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có \(\overrightarrow {AB} = (1;2;2)\).

Mặt phẳng đi qua \(A\) và vuông góc với \(AB\) nên nhận \(\overrightarrow {AB} = (1;2;2)\) làm vectơ pháp tuyến có phương trình: \(1(x - 0) + 2(y - 0) + 2(z - 1) = 0 \Leftrightarrow x + 2y + 2z - 2 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho điểm \(A\left( {1;2; - 1} \right)\) và mặt phẳng \(\left( \alpha \right):x - 2y + 2z + 2 = 0\). Mặt phẳng \(\left( \beta \right)\) song song với mặt phẳng \(\left( \alpha \right)\) và cách \(A\) một khoảng bằng 1 có dạng \(\left( \alpha \right):x - by + cz + d = 0\). Khi đó \(S = 3b - c + d\)?

Xem đáp án » 14/12/2024 147

Câu 2:

Cho hàm số \(f\left( x \right) = 3 + \frac{1}{x}\). Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của \(f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)?

Xem đáp án » 14/12/2024 106

Câu 3:

Tính \(I = \int\limits_0^1 {\left( {\frac{1}{{2x + 1}} + 3\sqrt x } \right)} dx\).

Xem đáp án » 14/12/2024 92

Câu 4:

Một vật có kích thước và hình dáng như hình vẽ dưới đây. Đáy là hình tròn giới hạn bởi đường tròn \({x^2} + {y^2} = 16\), cắt vật bởi các mặt phẳng vuông góc với trục \(Ox\) ta được thiết diện là tam giác đều. Khi đó thể tích của vật thể có dạng \(\frac{{a\sqrt 3 }}{b}\) với \(\frac{a}{b}\) là phân số tối giản. Tính \(S = a + b\).

Một vật có kích thước và hình dáng như hình vẽ dưới đây. Đáy là hình tròn giới hạn bởi đường tròn (ảnh 1)

Xem đáp án » 14/12/2024 87

Câu 5:

Cho biết \(\int {\frac{{4x + 1}}{{2x + 3}}dx} = ax - \frac{b}{2}\ln \left( {2x + 3} \right) + C\) với \(x \in \left( { - \frac{3}{2}; + \infty } \right)\) (\(a;b\) là các số nguyên dương). Tính \(2a - b\).

Xem đáp án » 14/12/2024 84

Câu 6:

Gọi \(\left( H \right)\) là hình giới hạn bởi đồ thị các hàm số \(y = \sqrt x ,y = 2 - x\) và trục hoành. Kí hiệu diện tích hình \(\left( H \right)\)\({S_1}\) và diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2 - x,y = \sqrt x \) và trục \(Oy\)\({S_2}\).

Gọi ( H \right)\) là hình giới hạn bởi đồ thị các hàm số \(y = \sqrt x ,y = 2 - x\) và trục hoành. Kí hiệu diện tích hình \ (ảnh 1)

a) Thể tích khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = 2 - x,x = 0,x = 1\) và trục \(Ox\) xung quanh trục \(Ox\) bằng \(\frac{{7\pi }}{3}\).

b) Giá trị \({S_1} = \frac{7}{6}\).

c) \({S_1} = {S_2}\).

d) Thể tích khối tròn xoay được tạo bởi khi quay hình \(\left( H \right)\) quanh trục \(Ox\) bằng \(\pi \).

Xem đáp án » 14/12/2024 68

Câu 7:

Trong không gian \[Oxyz\], khoảng cách giữa hai mặt phẳng \[\left( P \right):x + 2y + 2z - 8 = 0\] \[\left( Q \right):x + 2y + 2z - 4 = 0\] bằng

Xem đáp án » 14/12/2024 61

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store