Câu hỏi:

19/08/2025 477 Lưu

Trong không gian với hệ tọa độ \(Oxyz\) cho mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(M\left( {1;2;3} \right)\) và cắt các tia \(Ox,Oy,Oz\) lần lượt tại \(A,B,C\) sao cho độ dài \(OA,OB,OC\) theo thứ tự lập thành cấp số nhân có công bội bằng 3. Tính khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \(\left( \alpha \right)\) (kết quả làm tròn đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) (điều kiện \(a > 0,b > 0,c > 0\)).

Độ dài \(OA,OB,OC\) theo thứ tự lập thành cấp số nhân có công bội bằng 3.

Suy ra \(\left\{ \begin{array}{l}OB = 3OA\\OC = 3OB\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = 3a\\c = 3b\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = 3a\\c = 9a\end{array} \right.\).

Do đó \(A\left( {a;0;0} \right),B\left( {0;3a;0} \right),C\left( {0;0;9a} \right)\).

Khi đó ta có phương trình mặt phẳng \(\left( \alpha \right)\)\(\frac{x}{a} + \frac{y}{{3a}} + \frac{z}{{9a}} = 1\).

\(M\left( {1;2;3} \right) \in \left( \alpha \right)\) nên \(\frac{1}{a} + \frac{2}{{3a}} + \frac{3}{{9a}} = 1 \Leftrightarrow 6 = 3a \Leftrightarrow a = 2\).

Suy ra \(\left( \alpha \right):\frac{x}{2} + \frac{y}{6} + \frac{z}{{18}} = 1 \Leftrightarrow 9x + 3y + z - 18 = 0\).

Do đó \(d\left( {O,\left( \alpha \right)} \right) = \frac{{\left| {9.0 + 3.0 + 0 - 18} \right|}}{{\sqrt {{9^2} + {3^2} + {1^2}} }} = \frac{{18\sqrt {91} }}{{91}} \approx 1,9\).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Mặt phẳng \(\left( \beta \right)\) song song với mặt phẳng \(\left( \alpha \right)\) nên mặt phẳng \(\left( \beta \right)\) có dạng:\(x - 2y + 2z + d = 0\left( {d \ne 2} \right)\).

\(d\left( {M,\left( \beta \right)} \right) = 1 \Leftrightarrow \frac{{\left| {1 - 2.2 + 2.\left( { - 1} \right) + d} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} }} = 1 \Leftrightarrow \left| {d - 5} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}d = 8\left( {TM} \right)\\d = 2\left( {KTM} \right)\end{array} \right.\).

Do đó \(\left( \beta \right):x - 2y + 2z + 8 = 0\). Suy ra \(b = 2;c = 2;d = 8\).

Vậy \(S = 3.2 - 2 + 8 = 12\).

Lời giải

Bán kính đường tròn là 4.

Vì cắt vật bởi các mặt phẳng vuông góc với trục \(Ox\) tại \(x\left( { - 4 \le x \le 4} \right)\).

Suy ra cạnh của tam giác đều là \(2\sqrt {16 - {x^2}} \).

Do đó diện tích tam giác đều là \(S = \frac{{\sqrt 3 }}{4}{\left( {2\sqrt {16 - {x^2}} } \right)^2} = \sqrt 3 \left( {16 - {x^2}} \right)\).

Thể tích vật thể là \(V = \int\limits_{ - 4}^4 {\left[ {\sqrt 3 \left( {16 - {x^2}} \right)} \right]dx} = \frac{{256\sqrt 3 }}{3}\).

Suy ra \(a = 256;b = 3\). Do đó \(a + b = 259\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP