Câu hỏi:

14/12/2024 82

Trong không gian với hệ tọa độ \(Oxyz\) cho mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(M\left( {1;2;3} \right)\) và cắt các tia \(Ox,Oy,Oz\) lần lượt tại \(A,B,C\) sao cho độ dài \(OA,OB,OC\) theo thứ tự lập thành cấp số nhân có công bội bằng 3. Tính khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \(\left( \alpha \right)\) (kết quả làm tròn đến hàng phần mười).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) (điều kiện \(a > 0,b > 0,c > 0\)).

Độ dài \(OA,OB,OC\) theo thứ tự lập thành cấp số nhân có công bội bằng 3.

Suy ra \(\left\{ \begin{array}{l}OB = 3OA\\OC = 3OB\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = 3a\\c = 3b\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = 3a\\c = 9a\end{array} \right.\).

Do đó \(A\left( {a;0;0} \right),B\left( {0;3a;0} \right),C\left( {0;0;9a} \right)\).

Khi đó ta có phương trình mặt phẳng \(\left( \alpha \right)\)\(\frac{x}{a} + \frac{y}{{3a}} + \frac{z}{{9a}} = 1\).

\(M\left( {1;2;3} \right) \in \left( \alpha \right)\) nên \(\frac{1}{a} + \frac{2}{{3a}} + \frac{3}{{9a}} = 1 \Leftrightarrow 6 = 3a \Leftrightarrow a = 2\).

Suy ra \(\left( \alpha \right):\frac{x}{2} + \frac{y}{6} + \frac{z}{{18}} = 1 \Leftrightarrow 9x + 3y + z - 18 = 0\).

Do đó \(d\left( {O,\left( \alpha \right)} \right) = \frac{{\left| {9.0 + 3.0 + 0 - 18} \right|}}{{\sqrt {{9^2} + {3^2} + {1^2}} }} = \frac{{18\sqrt {91} }}{{91}} \approx 1,9\).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho điểm \(A\left( {1;2; - 1} \right)\) và mặt phẳng \(\left( \alpha \right):x - 2y + 2z + 2 = 0\). Mặt phẳng \(\left( \beta \right)\) song song với mặt phẳng \(\left( \alpha \right)\) và cách \(A\) một khoảng bằng 1 có dạng \(\left( \alpha \right):x - by + cz + d = 0\). Khi đó \(S = 3b - c + d\)?

Xem đáp án » 14/12/2024 643

Câu 2:

Một vật có kích thước và hình dáng như hình vẽ dưới đây. Đáy là hình tròn giới hạn bởi đường tròn \({x^2} + {y^2} = 16\), cắt vật bởi các mặt phẳng vuông góc với trục \(Ox\) ta được thiết diện là tam giác đều. Khi đó thể tích của vật thể có dạng \(\frac{{a\sqrt 3 }}{b}\) với \(\frac{a}{b}\) là phân số tối giản. Tính \(S = a + b\).

Một vật có kích thước và hình dáng như hình vẽ dưới đây. Đáy là hình tròn giới hạn bởi đường tròn (ảnh 1)

Xem đáp án » 14/12/2024 472

Câu 3:

Cho biết \(\int {\frac{{4x + 1}}{{2x + 3}}dx} = ax - \frac{b}{2}\ln \left( {2x + 3} \right) + C\) với \(x \in \left( { - \frac{3}{2}; + \infty } \right)\) (\(a;b\) là các số nguyên dương). Tính \(2a - b\).

Xem đáp án » 14/12/2024 386

Câu 4:

Cho hàm số \(f\left( x \right) = 3 + \frac{1}{x}\). Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của \(f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)?

Xem đáp án » 14/12/2024 371

Câu 5:

Trong không gian \[Oxyz\], cho ba điểm \[A\left( {2;0;0} \right)\], \[B\left( {0;3;0} \right)\], \[C\left( {0;0; - 1} \right)\]. Phương trình của mặt phẳng \[\left( P \right)\] qua \[D\left( {1;1;1} \right)\]và song song với mặt phẳng \[\left( {ABC} \right)\]

Xem đáp án » 14/12/2024 314

Câu 6:

Trong không gian \[Oxyz\], khoảng cách giữa hai mặt phẳng \[\left( P \right):x + 2y + 2z - 8 = 0\] \[\left( Q \right):x + 2y + 2z - 4 = 0\] bằng

Xem đáp án » 14/12/2024 306

Câu 7:

Gọi \(\left( H \right)\) là hình giới hạn bởi đồ thị các hàm số \(y = \sqrt x ,y = 2 - x\) và trục hoành. Kí hiệu diện tích hình \(\left( H \right)\)\({S_1}\) và diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2 - x,y = \sqrt x \) và trục \(Oy\)\({S_2}\).

Gọi ( H \right)\) là hình giới hạn bởi đồ thị các hàm số \(y = \sqrt x ,y = 2 - x\) và trục hoành. Kí hiệu diện tích hình \ (ảnh 1)

a) Thể tích khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = 2 - x,x = 0,x = 1\) và trục \(Ox\) xung quanh trục \(Ox\) bằng \(\frac{{7\pi }}{3}\).

b) Giá trị \({S_1} = \frac{7}{6}\).

c) \({S_1} = {S_2}\).

d) Thể tích khối tròn xoay được tạo bởi khi quay hình \(\left( H \right)\) quanh trục \(Ox\) bằng \(\pi \).

Xem đáp án » 14/12/2024 267

Bình luận


Bình luận