Câu hỏi:

17/12/2024 77

Cặp nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{2}x + \frac{2}{3}y = 7\\\frac{5}{3}x - \frac{3}{2}y = 1\end{array} \right.\) là:

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

• Thay x = 6, y = −6 vào hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{2}x + \frac{2}{3}y = 7\\\frac{5}{3}x - \frac{3}{2}y = 1\end{array} \right.\), ta được:

\(\left\{ \begin{array}{l}\frac{1}{2}.6 + \frac{2}{3}.\left( { - 6} \right) = - 1 \ne 7\\\frac{5}{3}.6 - \frac{3}{2}.\left( { - 6} \right) = 19 \ne 1\end{array} \right.\).

Do đó, (6; −6) không là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{2}x + \frac{2}{3}y = 7\\\frac{5}{3}x - \frac{3}{2}y = 1\end{array} \right.\).

• Thay x = 6, y = 6 vào hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{2}x + \frac{2}{3}y = 7\\\frac{5}{3}x - \frac{3}{2}y = 1\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}\frac{1}{2}.6 + \frac{2}{3}.6 = 7\\\frac{5}{3}.6 - \frac{3}{2}.6 = 1\end{array} \right.\).

Do đó, (6; 6) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{2}x + \frac{2}{3}y = 7\\\frac{5}{3}x - \frac{3}{2}y = 1\end{array} \right.\).

• Thay x = 6, y = 3 vào hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{2}x + \frac{2}{3}y = 7\\\frac{5}{3}x - \frac{3}{2}y = 1\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}\frac{1}{2}.6 + \frac{2}{3}.3 = 5 \ne 7\\\frac{5}{3}.6 - \frac{3}{2}.3 = \frac{{11}}{2} \ne 1\end{array} \right.\).

Do đó, (6; 3) không là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{2}x + \frac{2}{3}y = 7\\\frac{5}{3}x - \frac{3}{2}y = 1\end{array} \right.\).

• Thay x = 3, y = 6 vào hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{2}x + \frac{2}{3}y = 7\\\frac{5}{3}x - \frac{3}{2}y = 1\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}\frac{1}{2}.3 + \frac{2}{3}.6 = \frac{{11}}{2} \ne 7\\\frac{5}{3}.3 - \frac{3}{2}.6 = - 1 \ne 1\end{array} \right.\).

Do đó, (3; 6) không là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{2}x + \frac{2}{3}y = 7\\\frac{5}{3}x - \frac{3}{2}y = 1\end{array} \right.\).

Vậy chọn đáp án B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 11\\x + 2y = 1\end{array} \right.\) là

Xem đáp án » 17/12/2024 218

Câu 2:

Cặp số (3; −1) là nghiệm của hệ phương trình nào sau đây?

Xem đáp án » 17/12/2024 189

Câu 3:

Chiều dài và chiều rộng ban đầu của mảnh vườn đó là:

Xem đáp án » 17/12/2024 105

Câu 4:

Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + y = 5\\2x + 3y = 12\end{array} \right.\) là

Xem đáp án » 17/12/2024 97

Câu 5:

Cho các cặp số sau (2; 3), (3; 4), (4; 5), (−1; 0). Hỏi có bao nhiêu cặp số đã cho là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x - y = - 1\\2x - 2y = - 4\end{array} \right.\)?

Xem đáp án » 17/12/2024 77

Câu 6:

Hệ phương trình nào dưới đây biểu diễn bài toán trên?

Xem đáp án » 17/12/2024 77
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua