Câu hỏi:

17/12/2024 125

Chiều dài và chiều rộng ban đầu của mảnh vườn đó là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

• Thay x = 18, y = 14 vào hệ phương trình\(\left\{ \begin{array}{l}x + y = 32\\3x + 2y = 82\end{array} \right.\), ta được \(\left\{ \begin{array}{l}18 + 14 = 32\\3.18 + 2.14 = 82\end{array} \right.\).

Do đó, x = 18, y = 14 là nghiệm của hệ phương trình.

• Thay x = 24, y = 8 vào hệ phương trình \(\left\{ \begin{array}{l}x + y = 32\\3x + 2y = 82\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}24 + 8 = 32\\3.24 + 2.8 = 88 \ne 82\end{array} \right.\)

Do đó, x = 24, y = 8 không là nghiệm của hệ phương trình.

• Thay x = 14, y = 18 vào hệ phương trình \(\left\{ \begin{array}{l}x + y = 32\\3x + 2y = 82\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}14 + 18 = 32\\3.14 + 2.18 = 78\end{array} \right.\).

Do đó, x = 14, y = 18 không là nghiệm của hệ phương trình.

• Thay x = 8, y = 24 vào hệ phương trình \(\left\{ \begin{array}{l}x + y = 32\\3x + 2y = 82\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}8 + 24 = 32\\3.8 + 2.24 = 72 \ne 82\end{array} \right.\)

Do đó, x = 8, y = 24 không là nghiệm của hệ phương trình.

Vậy chiều dài và chiều rộng ban đầu của mảnh vườn lần lượt là 18 m và 14 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

• Thay x = −1, y = 3 vào hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 11\\x + 2y = 1\end{array} \right.\), ta được:

\(\left\{ \begin{array}{l}3.\left( { - 1} \right) - 2.3 = - 9 \ne 11\\ - 1 + 2.3 = 5 \ne 1\end{array} \right.\). Do đó, (−1; 3) không là nghiệm của hệ phương trình.

• Thay x = −1, y = −3 vào hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 11\\x + 2y = 1\end{array} \right.\), ta được:

\(\left\{ \begin{array}{l}3.\left( { - 1} \right) - 2.\left( { - 3} \right) = 3 \ne 11\\ - 1 + 2.\left( { - 3} \right) = - 7 \ne 1\end{array} \right.\). Do đó, (−1; −3) không là nghiệm của hệ phương trình.

• Thay x = 3, y = −1 vào hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 11\\x + 2y = 1\end{array} \right.\), ta được:

\(\left\{ \begin{array}{l}3.3 - 2.\left( { - 1} \right) = 11\\1.3 + 2.\left( { - 1} \right) = 1\end{array} \right.\). Do đó, (3; −1) là nghiệm của hệ phương trình.

• Thay x = 3, y = 1 vào hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 11\\x + 2y = 1\end{array} \right.\), ta được:

\(\left\{ \begin{array}{l}3.3 - 2.1 = 4 \ne 11\\1.3 + 2.1 = 5 \ne 1\end{array} \right.\). Do đó, (3; 1) không là nghiệm của hệ phương trình.

Vậy chọn đáp án C.

Câu 2

Cặp số (3; −1) là nghiệm của hệ phương trình nào sau đây?

Lời giải

Đáp án đúng là: A

• Thay x = 3, y = −1 vào hệ phương trình \(\left\{ \begin{array}{l}x + y = 2\\3x + 4y = 5\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}3 + \left( { - 1} \right) = 2\\3.3 + 4.\left( { - 1} \right) = 5\end{array} \right.\).

Do đó, cặp số (3; −1) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + y = 2\\3x + 4y = 5\end{array} \right.\).

• Thay x = 3, y = −1 vào hệ phương trình \(\left\{ \begin{array}{l}x - y = 2\\3x + 4y = 5\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}3 - \left( { - 1} \right) = 4 \ne 2\\3.3 + 4.\left( { - 1} \right) = 5\end{array} \right.\).

Do đó, cặp số (3; −1) không là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x - y = 2\\3x + 4y = 5\end{array} \right.\).

• Thay x = 3, y = −1 vào hệ phương trình \(\left\{ \begin{array}{l}x + y = 4\\3x - 4y = 3\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}3 + \left( { - 1} \right) = 2 \ne 4\\3.3 - 4.\left( { - 1} \right) = 5 \ne 3.\end{array} \right.\)

Do đó, cặp số (3; −1) không là nghiệm của hệ phương trình\(\left\{ \begin{array}{l}x + y = 4\\3x - 4y = 3\end{array} \right.\).

• Thay x = 3, y = −1 vào hệ phương trình \(\left\{ \begin{array}{l}2x - y = 5\\3x - 2y = 2\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}2.3 - \left( { - 1} \right) = 7 \ne 5\\3.3 - 2.\left( { - 1} \right) = 11 \ne 2\end{array} \right..\)

Do đó, cặp số (3; −1) không là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x - y = 5\\3x - 2y = 2\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Hệ phương trình nào dưới đây biểu diễn bài toán trên?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay