Câu hỏi:

17/12/2024 96

Hệ phương trình nào dưới đây biểu diễn bài toán trên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Giả sử chiều dài mảnh vườn đó là x (m), chiều rộng mảnh vườn đó là y (m)

(0 < y < x).

Nửa chu vi của mảnh vườn là: 64 : 2 = 32 (m).

Do đó, ta có phương trình x + y = 32 (1).

Diện tích ban đầu của mảnh vườn là: xy (m2).

Sau khi tăng chiều dài 2 m thì chiều dài mới của mảnh vườn là: x + 2 (m).

Sau khi tăng chiều rộng 3 m thì chiều rộng mới của mảnh vườn là: y + 3 (m).

Diện tích mới của mảnh vườn là: (x + 2)(y + 3) (m2)

Lúc này, diện tích tăng thêm 88 m2 nên ta có phương trình

(x + 2)(y + 3) – xy = 88 suy ra xy + 3x + 2y + 6 – xy = 88 hay 3x + 2y = 82 (2).

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 32\\3x + 2y = 82\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

• Thay x = −1, y = 3 vào hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 11\\x + 2y = 1\end{array} \right.\), ta được:

\(\left\{ \begin{array}{l}3.\left( { - 1} \right) - 2.3 = - 9 \ne 11\\ - 1 + 2.3 = 5 \ne 1\end{array} \right.\). Do đó, (−1; 3) không là nghiệm của hệ phương trình.

• Thay x = −1, y = −3 vào hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 11\\x + 2y = 1\end{array} \right.\), ta được:

\(\left\{ \begin{array}{l}3.\left( { - 1} \right) - 2.\left( { - 3} \right) = 3 \ne 11\\ - 1 + 2.\left( { - 3} \right) = - 7 \ne 1\end{array} \right.\). Do đó, (−1; −3) không là nghiệm của hệ phương trình.

• Thay x = 3, y = −1 vào hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 11\\x + 2y = 1\end{array} \right.\), ta được:

\(\left\{ \begin{array}{l}3.3 - 2.\left( { - 1} \right) = 11\\1.3 + 2.\left( { - 1} \right) = 1\end{array} \right.\). Do đó, (3; −1) là nghiệm của hệ phương trình.

• Thay x = 3, y = 1 vào hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 11\\x + 2y = 1\end{array} \right.\), ta được:

\(\left\{ \begin{array}{l}3.3 - 2.1 = 4 \ne 11\\1.3 + 2.1 = 5 \ne 1\end{array} \right.\). Do đó, (3; 1) không là nghiệm của hệ phương trình.

Vậy chọn đáp án C.

Câu 2

Cặp số (3; −1) là nghiệm của hệ phương trình nào sau đây?

Lời giải

Đáp án đúng là: A

• Thay x = 3, y = −1 vào hệ phương trình \(\left\{ \begin{array}{l}x + y = 2\\3x + 4y = 5\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}3 + \left( { - 1} \right) = 2\\3.3 + 4.\left( { - 1} \right) = 5\end{array} \right.\).

Do đó, cặp số (3; −1) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + y = 2\\3x + 4y = 5\end{array} \right.\).

• Thay x = 3, y = −1 vào hệ phương trình \(\left\{ \begin{array}{l}x - y = 2\\3x + 4y = 5\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}3 - \left( { - 1} \right) = 4 \ne 2\\3.3 + 4.\left( { - 1} \right) = 5\end{array} \right.\).

Do đó, cặp số (3; −1) không là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x - y = 2\\3x + 4y = 5\end{array} \right.\).

• Thay x = 3, y = −1 vào hệ phương trình \(\left\{ \begin{array}{l}x + y = 4\\3x - 4y = 3\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}3 + \left( { - 1} \right) = 2 \ne 4\\3.3 - 4.\left( { - 1} \right) = 5 \ne 3.\end{array} \right.\)

Do đó, cặp số (3; −1) không là nghiệm của hệ phương trình\(\left\{ \begin{array}{l}x + y = 4\\3x - 4y = 3\end{array} \right.\).

• Thay x = 3, y = −1 vào hệ phương trình \(\left\{ \begin{array}{l}2x - y = 5\\3x - 2y = 2\end{array} \right.\), ta được: \(\left\{ \begin{array}{l}2.3 - \left( { - 1} \right) = 7 \ne 5\\3.3 - 2.\left( { - 1} \right) = 11 \ne 2\end{array} \right..\)

Do đó, cặp số (3; −1) không là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x - y = 5\\3x - 2y = 2\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Chiều dài và chiều rộng ban đầu của mảnh vườn đó là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay