Câu hỏi:

17/12/2024 254 Lưu

Hệ phương trình \(\left\{ \begin{array}{l}\left( {\sqrt 3 - \sqrt 2 } \right)x + y = \sqrt 2 \\x + \left( {\sqrt 3 + \sqrt 2 } \right){\rm{y = }}\sqrt 6 {\rm{ }}\end{array} \right.\) có nghiệm là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có hệ phương trình \(\left\{ \begin{array}{l}\left( {\sqrt 3 - \sqrt 2 } \right)x + y = \sqrt 2 \\x + \left( {\sqrt 3 + \sqrt 2 } \right){\rm{y = }}\sqrt 6 {\rm{ }}\end{array} \right.\) hay

\(\left\{ \begin{array}{l}\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)x + \left( {\sqrt 3 + \sqrt 2 } \right)y = \sqrt 2 \left( {\sqrt 3 + \sqrt 2 } \right)\\x + \left( {\sqrt 3 + \sqrt 2 } \right){\rm{y = }}\sqrt 6 {\rm{ }}\end{array} \right.\)

do đó \(\left\{ \begin{array}{l}x + \left( {\sqrt 3 + \sqrt 2 } \right)y = \sqrt 6 + 2\\x + \left( {\sqrt 3 + \sqrt 2 } \right){\rm{y = }}\sqrt 6 {\rm{ }}\end{array} \right.\).

Trừ theo vế hai phương trình của hệ, ta được 0 = 2 (vô lí).

Vậy phương trình vô nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nhân hai vế của phương trình thứ nhất với 3, hai vế của phương trình thứ hai với 2, ta được: \(\left\{ \begin{array}{l}3.\left( {3x + 2y} \right) = 21\\2.\left( {2x - 3y} \right) =  - 8{\rm{ }}\end{array} \right.\) hay \(\left\{ \begin{array}{l}9x + 6y = 21\\4x - 6y =  - 8{\rm{ }}\end{array} \right.\).

Cộng từng vế của hai phương trình của hệ phương trình \(\left\{ \begin{array}{l}9x + 6y = 21\\4x - 6y =  - 8{\rm{ }}\end{array} \right.\), ta được:

13x = 13 hay x = 1.

Thế x = 1 vào phương trình thứ nhất của hệ đã cho, ta có: 3.1 + 2y = 7, suy ra y = 2.

Vậy hệ phương trình có nghiệm là (1; 2).

Lời giải

Thực hiện cộng từng vế của hai phương trình ta được 8y = 16, suy ra y = 2.

Thế y = 2 vào phương trình 2x + 3y = 4 ta được: 2x + 3.2 = 4 hay 2x = −2, suy ra

x = −1.

Vậy hệ phương trình đã cho có nghiệm là (−1; 2).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP