Câu hỏi:

17/12/2024 319

Hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{2}x + \frac{2}{3}y = 7\\\frac{5}{3}x - \frac{3}{2}y = 1{\rm{ }}\end{array} \right.\) có nghiệm (x0; y0). Giá trị biểu thức T = x0 + y0 là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{2}x + \frac{2}{3}y = 7\\\frac{5}{3}x - \frac{3}{2}y = 1{\rm{ }}\end{array} \right.\) hay \(\left\{ \begin{array}{l}\frac{3}{2}.\left( {\frac{1}{2}x + \frac{2}{3}y} \right) = 7.\frac{3}{2}\\\frac{2}{3}\left( {\frac{5}{3}x - \frac{3}{2}y} \right) = 1.\frac{2}{3}{\rm{ }}\end{array} \right.\),

Suy ra \(\left\{ \begin{array}{l}\frac{3}{4}x + y = \frac{{21}}{2}\\\frac{{10}}{9}x - y = \frac{2}{3}{\rm{ }}\end{array} \right.\).

Cộng theo vế hai phương trình của hệ, ta được \(\frac{{67}}{{36}}x = \frac{{67}}{6}\), do đó x = 6.

Thay x = 6 vào phương trình \(\frac{1}{2}\)x + \(\frac{2}{3}\)y = 7 ta được y = 6.

Vậy nghiệm của hệ phương trình là (x0; y0) = (6; 6).

Do đó, giá trị biểu thức T = x0 + y0 = 6 + 6 = 12.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Thực hiện cộng từng vế của hai phương trình ta được 8y = 16, suy ra y = 2.

Thế y = 2 vào phương trình 2x + 3y = 4 ta được: 2x + 3.2 = 4 hay 2x = −2, suy ra

x = −1.

Vậy hệ phương trình đã cho có nghiệm là (−1; 2).

Lời giải

Nhân hai vế của phương trình thứ nhất với 3, hai vế của phương trình thứ hai với 2, ta được: \(\left\{ \begin{array}{l}3.\left( {3x + 2y} \right) = 21\\2.\left( {2x - 3y} \right) =  - 8{\rm{ }}\end{array} \right.\) hay \(\left\{ \begin{array}{l}9x + 6y = 21\\4x - 6y =  - 8{\rm{ }}\end{array} \right.\).

Cộng từng vế của hai phương trình của hệ phương trình \(\left\{ \begin{array}{l}9x + 6y = 21\\4x - 6y =  - 8{\rm{ }}\end{array} \right.\), ta được:

13x = 13 hay x = 1.

Thế x = 1 vào phương trình thứ nhất của hệ đã cho, ta có: 3.1 + 2y = 7, suy ra y = 2.

Vậy hệ phương trình có nghiệm là (1; 2).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP