Câu hỏi:

17/12/2024 14

Hệ phương trình \(\left\{ \begin{array}{l}\frac{{2x + 3}}{{y - 1}} = \frac{{4x + 1}}{{2y + 1}}\\\frac{{x + 2}}{{y - 1}} = \frac{{x - 4}}{{y + 2}}\end{array} \right.\) có cặp nghiệm là (x0; y0).

Giá trị biểu thức T = 2x0 – 3y0

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Điều kiện: y ≠ 1, y ≠ −2, y ≠ \( - \frac{1}{2}\).

Ta có: \(\left\{ \begin{array}{l}\frac{{2x + 3}}{{y - 1}} = \frac{{4x + 1}}{{2y + 1}}\\\frac{{x + 2}}{{y - 1}} = \frac{{x - 4}}{{y + 2}}\end{array} \right.\) hay \(\left\{ \begin{array}{l}\left( {2x + 3} \right)\left( {2y + 1} \right) = \left( {4x + 1} \right)\left( {y - 1} \right)\\\left( {x + 2} \right)\left( {y + 2} \right) = \left( {y - 1} \right)\left( {x - 4} \right)\end{array} \right.\)

Suy ra \(\left\{ \begin{array}{l}4xy + 2x + 6y + 3 = 4xy - 4x + y - 1\\xy + 2x + 2y + 4 = xy - 4y - 4x + 4\end{array} \right.\) hay \(\left\{ \begin{array}{l}6x + 5y = - 4\\6x + 6y = 0\end{array} \right.\).

Trừ theo vế hai phương trình của hệ, ta được y = 4.

Thay y = 1 vào phương trình 6x + 6y = 0, ta suy ra x = −1.

Vậy nghiệm của hệ phương trình là (−1; 1).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình thích hợp điền vào chỗ trống (1) là:

Xem đáp án » 17/12/2024 23

Câu 2:

Giải hệ phương trình \(\left\{ \begin{array}{l} - 2x + 5y = 12\\2x + 3y = 4{\rm{ }}\end{array} \right.\) bằng phương pháp cộng đại số.

Xem đáp án » 17/12/2024 16

Câu 3:

Hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{2}x + \frac{2}{3}y = 7\\\frac{5}{3}x - \frac{3}{2}y = 1{\rm{ }}\end{array} \right.\) có nghiệm (x0; y0). Giá trị biểu thức T = x0 + y0 là:

Xem đáp án » 17/12/2024 15

Câu 4:

Hệ phương trình \(\left\{ \begin{array}{l}\left( {\sqrt 3 - \sqrt 2 } \right)x + y = \sqrt 2 \\x + \left( {\sqrt 3 + \sqrt 2 } \right){\rm{y = }}\sqrt 6 {\rm{ }}\end{array} \right.\) có nghiệm là

Xem đáp án » 17/12/2024 15

Câu 5:

Hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{2}\left( {x + 2} \right)\left( {y + 3} \right) = \frac{1}{2}xy + 50\\\frac{1}{2}\left( {x - 2} \right)\left( {y - 2} \right) = \frac{1}{2}xy - 32{\rm{ }}\end{array} \right.\) có nghiệm là

Xem đáp án » 17/12/2024 14

Câu 6:

Hệ phương trình \(\left\{ \begin{array}{l}5x\sqrt 3 + y = 2\sqrt 2 \\x\sqrt 6 + y\sqrt 2 = 2{\rm{ }}\end{array} \right.\) có cặp nghiệm (x0; y0). Giá trị của biểu thức T = \(x_0^2 + y_0^2\) là

Xem đáp án » 17/12/2024 14

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store