Câu hỏi:

19/12/2024 40

Cho các số thực a, b không đồng thời bằng 0. Chứng minh rằng:

\[\frac{{2ab}}{{{a^2} + 4{b^2}}} + \frac{{{b^2}}}{{3{a^2} + 2{b^2}}} \le \frac{3}{5}\].

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Xét hiệu \[\frac{3}{5}\] − \[\frac{{2ab}}{{{a^2} + 4{b^2}}} - \frac{{{b^2}}}{{3{a^2} + 2{b^2}}}\]

= \[\frac{2}{5}\] − \[\frac{{2ab}}{{{a^2} + 4{b^2}}}\] + \[\frac{1}{5}\] − \[\frac{{{b^2}}}{{3{a^2} + 2{b^2}}}\]

= \[\frac{{2{a^2} - 10ab + 8{b^2}}}{{5\left( {{a^2} + 4{b^2}} \right)}}\] + \[\frac{{3{a^2} + 2{b^2} - 5{b^2}}}{{5\left( {3{a^2} + 2{b^2}} \right)}}\]

= \[\frac{{2\left( {a - b} \right)\left( {a - 4b} \right)}}{{5\left( {{a^2} + 4{b^2}} \right)}}\]+ \[\frac{{3\left( {a - b} \right)\left( {a + b} \right)}}{{5\left( {3{a^2} + 2{b^2}} \right)}}\]

= \[\frac{{2\left( {a - b} \right)\left( {a - 4b} \right)\left( {3{a^2} + 2{b^2}} \right) + 3\left( {a - b} \right)\left( {a + b} \right)\left( {{a^2} + 4{b^2}} \right)}}{{5\left( {{a^2} + 4{b^2}} \right)\left( {3{a^2} + 2{b^2}} \right)}}\]

= \[\frac{{\left( {a - b} \right)\left[ {2\left( {a - 4b} \right)\left( {3{a^2} + 2{b^2}} \right) + 3\left( {a + b} \right)\left( {{a^2} + 4{b^2}} \right)} \right]}}{{5\left( {{a^2} + 4{b^2}} \right)\left( {3{a^2} + 2{b^2}} \right)}}\]

= \[\frac{{\left( {a - b} \right)\left[ {2\left( {a - 4b} \right)\left( {3{a^2} + 2{b^2}} \right) + 3\left( {a + b} \right)\left( {{a^2} + 4{b^2}} \right)} \right]}}{{5\left( {{a^2} + 4{b^2}} \right)\left( {3{a^2} + 2{b^2}} \right)}}\]

= \[\frac{{\left( {a - b} \right)\left[ {9{a^3} - 21{a^2}b + 16a{b^2} - 4{b^3}} \right]}}{{5\left( {{a^2} + 4{b^2}} \right)\left( {3{a^2} + 2{b^2}} \right)}}\]

= \[\frac{{{{\left( {a - b} \right)}^2}{{\left( {3a - 2b} \right)}^2}}}{{5\left( {{a^2} + 4{b^2}} \right)\left( {3{a^2} + 2{b^2}} \right)}}\] ≥ 0.

Do đó \[\frac{3}{5}\] − \[\frac{{2ab}}{{{a^2} + 4{b^2}}} - \frac{{{b^2}}}{{3{a^2} + 2{b^2}}}\] ≥ 0.

Dấu “=” xảy ra khi a = b hoặc 3a = 2b.

Vậy \[\frac{{2ab}}{{{a^2} + 4{b^2}}} + \frac{{{b^2}}}{{3{a^2} + 2{b^2}}} \le \frac{3}{5}\] (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a ≥ 2b. Chứng minh :

a) 2a + 7 > a + 2b + 7;

b) 4b + 4a ≤ 5a + 2b.

Xem đáp án » 19/12/2024 201

Câu 2:

Chứng minh:

a) \[\sqrt {2025} - \sqrt 5 > \sqrt {2024} - \sqrt 5 \];

b) \[\frac{1}{{2024}}\] + 2023 > \[\frac{1}{{2025}}\] + 2023.

Xem đáp án » 19/12/2024 189

Câu 3:

Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng:

\[\frac{{bc}}{a} + \frac{{ca}}{b} + \frac{{ab}}{c} \ge a + b + c\]

Xem đáp án » 19/12/2024 160

Câu 4:

Cho hai số a, b thỏa mãn a2 > b2 > 0. Chứng tỏ 5a2 > 4b2.

Xem đáp án » 19/12/2024 142

Câu 5:

Không thực hiện phép tính, hãy so sánh:

a) 2023 + (−19) và 2024 + (−19);

b) \[\sqrt 2 \] + 2 và 4.

c) −3 + 2350 và −2 + 2350.

Xem đáp án » 19/12/2024 112

Câu 6:

Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng:

ab(a + b – 2c) + bc(b + c – 2a) + ca(c + a – 2b) ≥ 0

Xem đáp án » 19/12/2024 103

Câu 7:

Với mọi a, b chứng minh (a2 + b2)2 ≥ ab.(a + b)2.

Xem đáp án » 19/12/2024 63

Bình luận


Bình luận