Câu hỏi:
19/12/2024 4Điều kiện của m để bất phương trình \(\left( {{m^2} - \frac{1}{4}} \right)\)x – 1 > 0 là một bất phương trình bậc nhất một ẩn là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Để \(\left( {{m^2} - \frac{1}{4}} \right)\)x – 1 > 0 là bất phương trình bậc nhất một ẩn thì m2 – \(\frac{1}{4}\) ≠ 0
Suy ra m2 ≠ \(\frac{1}{4}\) do đó m ≠ \(\frac{1}{2}\) và m ≠ −\(\frac{1}{2}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Hãy xét xem các bất phương trình sau có là bất phương trình bậc nhất một ẩn hay không?
a) 0x – 2024 ≥ 0;
b) 2024x + 2025 < 0;
c) \(\frac{{{x^2}}}{2} - 1 > 0\).
Câu 4:
Trong các bất phương trình dưới đây, đâu không là bất phương trình bậc nhất một ẩn?
Câu 5:
Kiểm tra xem giá trị x = 5 có phải là nghiệm của mỗi bất phương trình bậc nhất dưới đây hay không?
a) 6x – 29 > 0; b) 11x – 52 > 0; c) x – 2 ≤ 0.
Câu 6:
Trong các bất phương trình dưới đây, đâu là bất phương trình bậc nhất một ẩn?
Câu 7:
Giá trị x = \(\frac{1}{2}\) không là nghiệm của bất phương trình nào dưới đây?
về câu hỏi!