Câu hỏi:

09/01/2025 2,483 Lưu

Trong một tam giác vuông, đường cao ứng với cạnh huyền chia tam giác thành hai phần có diện tích bằng 54 cm2 và 96 cm2. Độ dài cạnh huyền bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: SABH.SACH = 54.96

Suy ra \(\frac{1}{4}\)AB2.BH.CH = 54.96

AH4 = 4.54.96 = 124

Suy ra AH = 12.

Lại có SABC = \(\frac{1}{2}AH.BC\)

Suy ra BC = \(\frac{{2{S_{ABC}}}}{{AH}} = \frac{{2\left( {54 + 96} \right)}}{{12}} = 25\) (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Vì ∆ABC vuông tại A nên \(\widehat A = 90^\circ \), suy ra \(\widehat B + \widehat C = 90^\circ \)

Suy ra \(\widehat C = 90^\circ - 60^\circ = 30^\circ \).

AB = cot \(\widehat B\). AC = 12.cot 60° = 12. \(\frac{{\sqrt 3 }}{3}\) = \(4\sqrt 3 \) ≈ 6,9 cm.

BC2 = AC2 + AB2 = 122 + (\(4\sqrt 3 \))2 = 192

Suy ra BC = \(\sqrt {192} = 8\sqrt 3 \approx 13,9\) (cm).

Diện tích tam giác ABC là:

S = \(\frac{1}{2}AB.AC = \frac{1}{2}.4\sqrt 3 .12 = 24\sqrt 3 \approx 41,6\) (cm2)

Lời giải

Đáp án đúng là: B

Xét tam giác OPN vuông tại P nên ta có:

OP = ON.sin\(\widehat N\) = 9.sin 38° ≈ 5,54 (cm).

NP = ON.cos\(\widehat N\) = 9.cos 38° ≈ 7,09 (cm).

Xét tam giác OPM vuông tại P nên ta có:

MP = \(\frac{{OP}}{{\tan \widehat M}} = \frac{{5,54}}{{\tan 60^\circ }} = \frac{{5,54}}{{\sqrt 3 }} = 3,2\) (cm).

Ta có: MN = NP – MP = 7,09 – 3,2 – 3,89 (cm).

Do đó, SOMN = \(\frac{1}{2}OP.MN = \frac{1}{2}.5,55.3,89 \approx 11\) cm2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP