Câu hỏi:

09/01/2025 768 Lưu

Cho tam giác như hình vẽ dưới đây. Tính diện tích tam giác OMN (làm tròn đến kết quả hàng đơn vị).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Xét tam giác OPN vuông tại P nên ta có:

OP = ON.sin\(\widehat N\) = 9.sin 38° ≈ 5,54 (cm).

NP = ON.cos\(\widehat N\) = 9.cos 38° ≈ 7,09 (cm).

Xét tam giác OPM vuông tại P nên ta có:

MP = \(\frac{{OP}}{{\tan \widehat M}} = \frac{{5,54}}{{\tan 60^\circ }} = \frac{{5,54}}{{\sqrt 3 }} = 3,2\) (cm).

Ta có: MN = NP – MP = 7,09 – 3,2 – 3,89 (cm).

Do đó, SOMN = \(\frac{1}{2}OP.MN = \frac{1}{2}.5,55.3,89 \approx 11\) cm2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có: SABH.SACH = 54.96

Suy ra \(\frac{1}{4}\)AB2.BH.CH = 54.96

AH4 = 4.54.96 = 124

Suy ra AH = 12.

Lại có SABC = \(\frac{1}{2}AH.BC\)

Suy ra BC = \(\frac{{2{S_{ABC}}}}{{AH}} = \frac{{2\left( {54 + 96} \right)}}{{12}} = 25\) (cm).

Lời giải

Media VietJack

Vì ∆ABC vuông tại A nên \(\widehat A = 90^\circ \), suy ra \(\widehat B + \widehat C = 90^\circ \)

Suy ra \(\widehat C = 90^\circ - 60^\circ = 30^\circ \).

AB = cot \(\widehat B\). AC = 12.cot 60° = 12. \(\frac{{\sqrt 3 }}{3}\) = \(4\sqrt 3 \) ≈ 6,9 cm.

BC2 = AC2 + AB2 = 122 + (\(4\sqrt 3 \))2 = 192

Suy ra BC = \(\sqrt {192} = 8\sqrt 3 \approx 13,9\) (cm).

Diện tích tam giác ABC là:

S = \(\frac{1}{2}AB.AC = \frac{1}{2}.4\sqrt 3 .12 = 24\sqrt 3 \approx 41,6\) (cm2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP