Câu hỏi:
09/01/2025 344Cho tam giác BAC là tam giác đều cạnh 8 cm và \(\widehat {AMB} = 42^\circ \). Tính AM (làm tròn kết quả đến chữ số thập phân thứ hai).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Kẻ đường cao AH (H ∈ BC).
Do ∆ABC đều nên AH cũng là đường trung tuyến.
Suy ra BH = HC = 4 cm.
Từ ∆ABH vuông tại H, ta có:
sin M = \(\frac{{AH}}{{AM}}\) suy ra \(AM = \frac{{AH}}{{\sin \widehat M}} = \frac{{4\sqrt 3 }}{{0,669}} \approx 10,34\) (cm).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có: SABH.SACH = 54.96
Suy ra \(\frac{1}{4}\)AB2.BH.CH = 54.96
AH4 = 4.54.96 = 124
Suy ra AH = 12.
Lại có SABC = \(\frac{1}{2}AH.BC\)
Suy ra BC = \(\frac{{2{S_{ABC}}}}{{AH}} = \frac{{2\left( {54 + 96} \right)}}{{12}} = 25\) (cm).
Lời giải
Đáp án đúng là: B
Trong tam giác vuông ANC vuông tại N, \(\widehat C = 30^\circ \).
Ta có: AN = AC.sin 30°, suy ra \(AC = \frac{{AN}}{{\sin 30^\circ }} = \frac{{3,65}}{{0,5}} = 7,3\) (cm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.