Câu hỏi:

12/01/2025 226

Cho \({\log _3}a = 2\) và \({\log _2}b = \frac{1}{2}\). Tính \(I = 2{\log _3}\left[ {{{\log }_3}\left( {3a} \right)} \right] + {\log _{\frac{1}{4}}}{b^2}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Trả lời: 1,5

\(I = 2{\log _3}\left[ {{{\log }_3}\left( {3a} \right)} \right] + {\log _{\frac{1}{4}}}{b^2}\)\( = 2{\log _3}\left[ {1 + {{\log }_3}a} \right] + 2{\log _{{2^{ - 2}}}}b\)\( = 2{\log _3}\left[ {1 + 2} \right] - {\log _2}b\)\( = 2 - \frac{1}{2} = \frac{3}{2} = 1,5\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Đ, b) Đ, c) Đ, d) Đ

Cho hình chóp  S . A B C D  có đáy là hình chữ nhật và  S A  vuông góc với mặt phẳng đáy. Gọi  H , K  theo thứ tự là hình chiếu của  A  trên các cạnh  S B , S D . (ảnh 1)

a) Vì

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\).

b) Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\left( {{\rm{do}}\;SA \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).

Vì \(\left\{ \begin{array}{l}CD \bot \left( {SAD} \right)\\SD \subset \left( {SAD} \right)\end{array} \right. \Rightarrow CD \bot SD\) hay tam giác \(SCD\) vuông tại \(D\).

c) Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA(\;{\rm{do}}\;SA \bot \left( {ABCD} \right))\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\).

Ta có \(\left\{ \begin{array}{l}AH \bot SB\\AH \bot BC\left( {{\rm{do}}\;BC \bot \left( {SAB} \right)} \right)\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\)(1).

Tương tự \(\left\{ \begin{array}{l}AK \bot SD\\AK \bot CD\left( {{\rm{do}}\;CD \bot \left( {SAD} \right)} \right)\end{array} \right. \Rightarrow AK \bot \left( {SCD} \right) \Rightarrow AK \bot SC\) (2).

Từ (1) và (2) suy ra \(SC \bot \left( {AHK} \right)\).

d) Vì \(SC \bot \left( {AHK} \right)\) mà \(HK \subset \left( {AHK} \right)\) nên \(HK \bot SC\).

Lời giải

Đáp án đúng là: D

Xác suất để cả hai động cơ chạy tốt là: \(P = 0,8.0,7 = 0,56\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay