Câu hỏi:
12/01/2025 4,872Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\) tâm \(O\), \(SO \bot \left( {ABCD} \right)\), \(SO = \frac{{a\sqrt 6 }}{3},OB = \frac{{a\sqrt 3 }}{3}\). Góc phẳng nhị diện \(\left[ {A,BC,S} \right]\) có số đo bằng
Quảng cáo
Trả lời:
Đáp án đúng là: C
Hạ \(OH \bot BC\) mà \(SO \bot BC\left( {SO \bot \left( {ABCD} \right)} \right)\) nên \(BC \bot \left( {SOH} \right) \Rightarrow BC \bot SH\).
Do đó \(\left[ {A,BC,S} \right] = \widehat {SHO}\).
Có \(OC = \sqrt {B{C^2} - O{B^2}} = \sqrt {{a^2} - \frac{{3{a^2}}}{9}} = \frac{{a\sqrt 6 }}{3}\).
Xét \(\Delta BOC\) có \(\frac{1}{{O{H^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{9}{{3{a^2}}} + \frac{9}{{6{a^2}}} = \frac{9}{{2{a^2}}} \Rightarrow OH = \frac{{a\sqrt 2 }}{3}\).
Xét \(\Delta SOH\) có \(\tan \widehat {SHO} = \frac{{SO}}{{OH}} = \frac{{a\sqrt 6 }}{3}:\frac{3}{{a\sqrt 2 }} = \sqrt 3 \)\( \Rightarrow \widehat {SHO} = 60^\circ \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Vì A và B là hai biến cố xung khắc nên \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) \Rightarrow P\left( B \right) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}\).
Lời giải
Hướng dẫn giải
Số cách chọn được 2 sản phẩm không đạt chất lượng là: \(C_4^2 = 6\) (cách).
Xác suất để chọn được 2 sản phẩm không đạt chất lượng là \(\frac{6}{{C_{20}^2}} = \frac{3}{{95}}\).
Suy ra xác suất để chọn được ít nhất một sản phẩm tốt là: \(1 - \frac{3}{{95}} = \frac{{92}}{{95}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.