Cho hình chữ nhật ABCD có AB = a, BC = b. Chứng minh bốn điểm A, B, C, D cùng thuộc một đường tròn. Xác định tâm và bán kính của đường tròn đó.
Cho hình chữ nhật ABCD có AB = a, BC = b. Chứng minh bốn điểm A, B, C, D cùng thuộc một đường tròn. Xác định tâm và bán kính của đường tròn đó.
Quảng cáo
Trả lời:
Gọi O là giao điểm của hai đường chéo AC và BD.
Theo tính chất hai đường chéo của hình chữ nhật, ta có:
OA = OB = OC = OD = \(\frac{1}{2}\)AC = \(\frac{1}{2}\)BD.
Do đó, bốn điểm A, B, C, D cùng thuộc đường tròn \(\left( {O;\frac{1}{2}AC} \right)\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi O là trung điểm BC.
Xét tam giác vuông ABC, có AO là trung tuyến nên AO = \(\frac{1}{2}\)BC.
Suy ra OA = OB = OC.
Do đó ba điểm A, B, C cùng thuộc một đường tròn tâm O bán kính \(\frac{1}{2}\)BC.
Lời giải
Gọi O là trung điểm của BC.
Ta có: BD là đường cao nên BD ⊥ AC, hay tam giác BDC vuông tại D.
Trong tam giác vuông BDC có DO là trung tuyến ứng với cạnh huyền BC nên
OD = OB = OC = \(\frac{1}{2}\)BC (1).
Tương tự, ta có: OE = OB = OC = \(\frac{1}{2}\)BC (2) và OF = OB = OC = \(\frac{1}{2}\)BC (3).
Do đó, năm điểm B, C, D, E, F cùng thuộc một đường tròn (O; R) với R = \(\frac{1}{2}\)BC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.