Câu hỏi:

14/01/2025 584

Cho hình chữ nhật ABCD có AB = a, BC = b. Chứng minh bốn điểm A, B, C, D cùng thuộc một đường tròn. Xác định tâm và bán kính của đường tròn đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi O là giao điểm của hai đường chéo AC và BD.

Theo tính chất hai đường chéo của hình chữ nhật, ta có:

OA = OB = OC = OD = \(\frac{1}{2}\)AC = \(\frac{1}{2}\)BD.

Do đó, bốn điểm A, B, C, D cùng thuộc đường tròn \(\left( {O;\frac{1}{2}AC} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Gọi O là trung điểm BC.

Xét tam giác vuông ABC, có AO là trung tuyến nên AO = \(\frac{1}{2}\)BC.

Suy ra OA = OB = OC.

Do đó ba điểm A, B, C cùng thuộc một đường tròn tâm O bán kính \(\frac{1}{2}\)BC.

Câu 2

Lời giải

Đáp án đúng là: A

Trong tam giác vuông trung điểm cạnh huyền là tâm đường tròn ngoại tiếp tam giác đó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP