Câu hỏi:

14/01/2025 741 Lưu

Cho tam giác ABC, các đường cao BD và CE. Trên cạnh AC lấy điểm M. Kẻ tia Cx vuông góc với tia BM tại F. Chứng minh rằng năm điểm B, C, D, E, F cùng thuộc một đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi O là trung điểm của BC.

Ta có: BD là đường cao nên BD ⊥ AC, hay tam giác BDC vuông tại D.

Trong tam giác vuông BDC có DO là trung tuyến ứng với cạnh huyền BC nên

OD = OB = OC = \(\frac{1}{2}\)BC (1).

Tương tự, ta có: OE = OB = OC = \(\frac{1}{2}\)BC  (2) và OF = OB = OC = \(\frac{1}{2}\)BC  (3).

Do đó, năm điểm B, C, D, E, F cùng thuộc một đường tròn (O; R) với R = \(\frac{1}{2}\)BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Gọi O là trung điểm BC.

Xét tam giác vuông ABC, có AO là trung tuyến nên AO = \(\frac{1}{2}\)BC.

Suy ra OA = OB = OC.

Do đó ba điểm A, B, C cùng thuộc một đường tròn tâm O bán kính \(\frac{1}{2}\)BC.

Câu 2

Lời giải

Đáp án đúng là: A

Trong tam giác vuông trung điểm cạnh huyền là tâm đường tròn ngoại tiếp tam giác đó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP