Câu hỏi:

14/01/2025 101 Lưu

Cho tam giác ABC cân tại A, đường cao AH = 2 cm, BC = 8 cm. Đường vuông góc với AC tại C cắt đường thẳng AH ở D. Các điểm nào sau đây cùng thuộc một đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có tam giác ABC cân tại A có đường cao AH nên AH cũng là đường phân giác \(\widehat {CAD} = \widehat {DAB}\).

Suy ra ∆ACD = ∆ABD (c.g.c) nên \(\widehat {ABD} = \widehat {ACD} = 90^\circ \).

Lấy I là trung điểm AD, Xét hai tam giác vuông ABD và ACD có:

IA = ID = IB = IC = \(\frac{{DA}}{2}\).

Nên I là điểm cách đều A, B, D, C hay A, B, D, C cùng nằm trên đường tròn tâm I đường kính AD. Đáp án cần chọn là D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Gọi O là trung điểm BC.

Xét tam giác vuông ABC, có AO là trung tuyến nên AO = \(\frac{1}{2}\)BC.

Suy ra OA = OB = OC.

Do đó ba điểm A, B, C cùng thuộc một đường tròn tâm O bán kính \(\frac{1}{2}\)BC.

Câu 2

Lời giải

Đáp án đúng là: A

Trong tam giác vuông trung điểm cạnh huyền là tâm đường tròn ngoại tiếp tam giác đó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP