Câu hỏi:

14/01/2025 103 Lưu

Cho đường tròn (O) và đường thẳng a. Kẻ OH vuông góc với đường thẳng a tại H, biết OH = R khi đó đường thẳng a và đường tròn (O)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Theo đề OH ⊥ a tại H và OH = R nên OH tiếp xúc với (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Xét (O) có OB = OC = OD nên BO = \(\frac{{DC}}{2}\) hay ∆BDC vuông tại B

suy ra BD ⊥ AC.

∆ABD = ∆CBD nên DA = DC = 2R.

Lời giải

a) Xét tam giác OAC và tam giác OAB, có:

OC = OB = R

OA: chung;

AC = AB (gt)

Suy ra ∆OAC = ∆OAB (c.c.c)

Suy ra \(\widehat {ACO} = \widehat {OBA} = 90^\circ \)

Suy ra AC là tiếp tuyến của (O).

b) OD EC (gt) và ∆COE cân tại O suy ra M là trung điểm của EC.

OD là đường trung trực của đoạn thẳng EC.

Suy ra DE = DC, do đó \(\widehat {OED} = \widehat {OCD} = 90^\circ \)( tính chất đối xứng trục)

Vậy DE là tiếp tuyến của đường tròn (O).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP