Câu hỏi:

14/01/2025 1,676

Cho (O; R). Từ điểm M ở ngoài đường tròn vẽ tiếp tuyến MA, MB đến đường tròn. Đường trung trực của đường kinh BC cắt đường thẳng AC tại K. Tính độ dài đoạn thẳng MK.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Xét đường tròn (O; R) có MA, MB là tiếp tuyến.

Suy ra \(\widehat {BOM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB}\) (tính chất hai tiếp tuyến cắt nhau) (1).

∆OAC có OA = OC suy ra \(\widehat {OAC} = \widehat {OCA}\) (tính chất tam giác cân)

Ta có: \(\widehat {OAC} + \widehat {OCA} = \widehat {AOB}\) (tính chất góc ngoài của tam giác)

Từ (1) và (2) suy ra \(\widehat {OCA} = \widehat {BOM}\).

Mà \(\widehat {OCA},\widehat {BOM}\) ở vị trí đồng vị.

Nên CK ∕∕ OM suy ra \(\widehat {MOK} = \widehat {CKO}\) (so le trong).

Chứng minh ∆OAM = ∆OCK (c.g.c) suy ra CK = OM (hai cạnh tương ứng).

Chứng minh ∆KMO = ∆OCK (c.g.c) suy ra \(\widehat {COK} = \widehat {OKM}\) (hai góc .

tương ứng).

Mà \(\widehat {COK}\) = 90° (KO là trung trực của BC) suy ra \(\widehat {OKM}\) = 90°.

Xét tứ giác OBMK có:

\(\widehat {OBM}\) = 90° (MB là tiếp tuyến của (O; R)).

\(\widehat {BOK}\) = 90° (KO là trung trực của BC).

\(\widehat {OKM}\) = 90° (cmt)

Do đó OBMK là hình chữ nhật suy ra MK = OB = R.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Vì AB là tiếp tuyến và B là tiếp điểm nên OB = R = 5 cm; AB ⊥ OB tại B.

Áp dụng định lí Pythagore vào tam giác ABO vuông tại B, ta được:

AB = \(\sqrt {O{A^2} - O{B^2}} = \sqrt {{{13}^2} - {5^2}} = 12\) cm.

Lời giải

Đáp án đúng là: D

Xét tam giác ABC vuông tại A, có: cosB = \(\frac{{AB}}{{BC}} = \frac{1}{2}\) suy ra \(\widehat B = 60^\circ \).

Xét tam giác ABD có AH là đường cao đồng thời là đường trung tuyến nên tam giác ABD cân tại A, có \(\widehat B = 60^\circ \) suy ra ∆ABD đều.

Ta có: OD = OE suy ra ∆ODE cân tại O.

Có AB ∕∕DE suy ra \(\widehat {ABC} = \widehat {EDC} = 60^\circ \) suy ra ∆ODE đều.

Do đó DE = DH = DO = \(\frac{{BC}}{4}\) suy ra \(\widehat {HEO} = 90^\circ \).

Suy ra HE là tiếp tuyến của đường tròn đường kính CD.

Xét tam giác HEO vuông tại E, áp dụng định lí Pythagore, ta có:

HO2 = HE2 + EO2 suy ra HE2 = 82 – 42 = 12. Suy ra HE = \(2\sqrt 3 \) cm.

Câu 3

Từ thích hợp điền vào vị trí số (1) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay