Câu hỏi:
14/01/2025 297
Cho đường tròn (O; R) và dây AB = 1,6R. Vẽ một tiếp tuyến song song với AB, cắt các tia OA, OB lần lượt tại M và N. Tính diện tích tam giác OMN.
Cho đường tròn (O; R) và dây AB = 1,6R. Vẽ một tiếp tuyến song song với AB, cắt các tia OA, OB lần lượt tại M và N. Tính diện tích tam giác OMN.
Quảng cáo
Trả lời:
Nối OH ta được OH ⊥ MN (tính chất tiếp tuyến)
Ta lại có AB ∕∕ MN suy ra OH ⊥ MN tại I.
Theo tính chất đường kính vuông góc với dây cung ta được:
AI = BI = 1,6R : 2 = 0,8R.
Tam giác IOA vuông tại I, nên áp dụng định lí Pythagore, ta được:
OI2 = OA2 – IA2 = R2 – (0,8R)2 = 0,36R2 suy ra OI = 0,6r.
Xét tam giác MON có AB ∕∕ MN suy ra ∆OAB ∽ ∆OMN suy ra \(\frac{{AB}}{{MN}} = \frac{{OI}}{{OH}}\) (tỉ số hai đường cao ứng với tỉ số đồng dạng)
Suy ra MN = \(\frac{{AB.OH}}{{OI}} = \frac{{1,6R}}{{0,6R}} = \frac{8}{3}R\).
Diện tích tam giác MON là: \(\frac{1}{2}MN.OH = \frac{1}{2}.\frac{8}{3}R.R = \frac{4}{3}{R^2}.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Xét đường tròn (O; R) có MA, MB là tiếp tuyến.
Suy ra \(\widehat {BOM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB}\) (tính chất hai tiếp tuyến cắt nhau) (1).
∆OAC có OA = OC suy ra \(\widehat {OAC} = \widehat {OCA}\) (tính chất tam giác cân)
Ta có: \(\widehat {OAC} + \widehat {OCA} = \widehat {AOB}\) (tính chất góc ngoài của tam giác)
Từ (1) và (2) suy ra \(\widehat {OCA} = \widehat {BOM}\).
Mà \(\widehat {OCA},\widehat {BOM}\) ở vị trí đồng vị.
Nên CK ∕∕ OM suy ra \(\widehat {MOK} = \widehat {CKO}\) (so le trong).
Chứng minh ∆OAM = ∆OCK (c.g.c) suy ra CK = OM (hai cạnh tương ứng).
Chứng minh ∆KMO = ∆OCK (c.g.c) suy ra \(\widehat {COK} = \widehat {OKM}\) (hai góc .
tương ứng).
Mà \(\widehat {COK}\) = 90° (KO là trung trực của BC) suy ra \(\widehat {OKM}\) = 90°.
Xét tứ giác OBMK có:
\(\widehat {OBM}\) = 90° (MB là tiếp tuyến của (O; R)).
\(\widehat {BOK}\) = 90° (KO là trung trực của BC).
\(\widehat {OKM}\) = 90° (cmt)
Do đó OBMK là hình chữ nhật suy ra MK = OB = R.
Lời giải
Đáp án đúng là: B
Vì AB là tiếp tuyến và B là tiếp điểm nên OB = R = 5 cm; AB ⊥ OB tại B.
Áp dụng định lí Pythagore vào tam giác ABO vuông tại B, ta được:
AB = \(\sqrt {O{A^2} - O{B^2}} = \sqrt {{{13}^2} - {5^2}} = 12\) cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.