Câu hỏi:
14/01/2025 243Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN với M ∈ (O) và N ∈ (O'). Gọi P là điểm đối xứng với M qua OO', Q là điểm đối xứng với N qua OO'. Khi đó, MN + QP bằng
Quảng cáo
Trả lời:
Đáp án đúng là: A
Vì P đối xứng với M qua OO', Q là điểm đối xứng với N qua OO' nên MN = QP; P ∈ (O) và Q ∈ (O').
Mà MP ⊥ OO'; NQ ⊥ OO' nên MP ∕∕ NQ mà \(\widehat {NMP} = \widehat {QPM}\) (do \(\widehat {OMN} = \widehat {OPQ};\widehat {OMP} = \widehat {OPM}\)).
Nên MNPQ là hình thang cân.
Có MN là tiếp tuysn chung nên MN ⊥ OM (tính chất) nên \(\widehat {OMN}\) = 90 ° hay \(\widehat {OMP} + \widehat {PMN} = 90^\circ \).
Ta có: OM = OP = R nên ∆OMP cân tại O.
Suy ra \(\widehat {OPM} = \widehat {OMP}\).
Lại có MNPQ là hình thang cân nên \(\widehat {PMN} = \widehat {QPM}\).
Từ đây suy ra \(\widehat {QPM} + \widehat {QPM} = 90^\circ \). Suy ra QP ⊥ OP tại P.
Kẻ tiếp tuyến chung tại A cắt NM tại E và PQ tại F.
Trong đường tròn (O), theo tính chất hai tiếp tuyến cắt nhau, ta có: EM = EA và FP = FA.
Trong đường tròn (O'), theo tính chất hai tiếp tuyến bằng nhau ta có:
EN = EA và FQ = FA.
Suy ra EM = EA = EN = \(\frac{1}{2}MN\).
FP = FA = FQ = \(\frac{1}{2}PQ\).
Suy ra MN + PQ = 2EA + 2FA = 2(EA + FA) = 2EF.
Vì EF là đường trung bình của hình thang MNPQ nên
EF = \(\frac{{MP + NQ}}{2}\) hay MP + NQ = 2EF.
Do đó, MN + PQ = MP + NQ.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai đường tròn (O) và (O') cắt nhau ở A và B (O và O' thuộc hai nửa mặt phẳng bờ AB). Kẻ các đường kính BOC và BO'D. Biết rằng OO' = 5 cm,
OB = 4 cm, O'B = 3 cm. Tính diện tích tam giác BCD.
Câu 2:
Cho đường tròn (O; R) đường kính AB, C là một điểm bất kì nằm giữa A và B. Vẽ đường tròn tâm I, đường kính CA; đường tròn tâm K, đường kính CB.
a) Xét vị trí tương đối của hai đường tròn (I) và (K).
b) Đường vuông góc với AB tại C cắt đường tròn (O) ở D và E. DA cắt đường tròn (I) ở M, DB cắt đường tròn (K) ở N.
c) Xác định vị trí của C trên đường kính AB sao cho MN có độ dài lớn nhất.
Câu 3:
Cho đoạn OO' và điểm A nằm trên đoạn OO' sao cho OA = 2O'A. Đường tròn (O) bán kính OA và đường tròn (O') bán kính O'A. Dây AD của đường tròn lớn cắt đường tròn nhỏ tại C. Khi đó:
Câu 4:
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Vẽ hai bán kính OM và O'N song song với nhau thuộc cùng một nửa mặt phẳng có bờ OO'. Tam giác MAN là tam giác gì?
Câu 5:
Cho hai đường tròn (O) và (O') cắt nhau tại A, B trong đó O' ∈ (O). Kẻ đường kính O'C của đường tròn (O). Chọn khẳng định sai?
Câu 6:
Cho hai đường tròn (O; R) và (O'; r) ở ngoài nhau. Gọi MN là tiếp tuyến chung ngoài, EF là tiếp tuyến chung trong (M và E thuộc (O), N và F thuộc (O'). Tính bán kính của đường tròn (O) khi OO' = 10 cm, MN = 8 cm và EF = 6 cm.
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận