Câu hỏi:

14/01/2025 65

Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN với M ∈ (O) và N ∈ (O'). Gọi P là điểm đối xứng với M qua OO', Q là điểm đối xứng với N qua OO'. Khi đó, MN + QP bằng

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Vì P đối xứng với M qua OO', Q là điểm đối xứng với N qua OO' nên MN = QP; P ∈ (O) và Q ∈ (O').

Mà MP ⊥ OO'; NQ ⊥ OO' nên MP ∕∕ NQ mà \(\widehat {NMP} = \widehat {QPM}\) (do \(\widehat {OMN} = \widehat {OPQ};\widehat {OMP} = \widehat {OPM}\)).

Nên MNPQ là hình thang cân.

Có MN là tiếp tuysn chung nên MN ⊥ OM (tính chất) nên \(\widehat {OMN}\) = 90 ° hay \(\widehat {OMP} + \widehat {PMN} = 90^\circ \).

Ta có: OM = OP = R nên ∆OMP cân tại O.

Suy ra \(\widehat {OPM} = \widehat {OMP}\).

Lại có MNPQ là hình thang cân nên \(\widehat {PMN} = \widehat {QPM}\).

Từ đây suy ra \(\widehat {QPM} + \widehat {QPM} = 90^\circ \). Suy ra QP ⊥ OP tại P.

Kẻ tiếp tuyến chung tại A cắt NM tại E và PQ tại F.

Trong đường tròn (O), theo tính chất hai tiếp tuyến cắt nhau, ta có: EM = EA và FP = FA.

Trong đường tròn (O'), theo tính chất hai tiếp tuyến bằng nhau ta có:

EN = EA và FQ = FA.

Suy ra EM = EA = EN = \(\frac{1}{2}MN\).

FP = FA = FQ = \(\frac{1}{2}PQ\).

Suy ra MN + PQ = 2EA + 2FA = 2(EA + FA) = 2EF.

Vì EF là đường trung bình của hình thang MNPQ nên

EF = \(\frac{{MP + NQ}}{2}\) hay MP + NQ = 2EF.

Do đó, MN + PQ = MP + NQ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai đường tròn (O) và (O') cắt nhau ở A và B (O và O' thuộc hai nửa mặt phẳng bờ AB). Kẻ các đường kính BOC và BO'D. Biết rằng OO' = 5 cm,

OB = 4 cm, O'B = 3 cm. Tính diện tích tam giác BCD.

Xem đáp án » 14/01/2025 79

Câu 2:

Cho đường tròn (O; R) đường kính AB, C là một điểm bất kì nằm giữa A và B. Vẽ đường tròn tâm I, đường kính CA; đường tròn tâm K, đường kính CB.

a) Xét vị trí tương đối của hai đường tròn (I) và (K).

b) Đường vuông góc với AB tại C cắt đường tròn (O) ở D và E. DA cắt đường tròn (I) ở M, DB cắt đường tròn (K) ở N.

c) Xác định vị trí của C trên đường kính AB sao cho MN có độ dài lớn nhất.

Xem đáp án » 14/01/2025 40

Câu 3:

Cho hai đường tròn (O; R) và (O'; r) ở ngoài nhau. Gọi MN là tiếp tuyến chung ngoài, EF là tiếp tuyến chung trong (M và E thuộc (O), N và F thuộc (O'). Tính bán kính của đường tròn (O) khi OO' = 10 cm, MN = 8 cm và EF = 6 cm.

Xem đáp án » 14/01/2025 39

Câu 4:

Cho hai đường tròn (O) và (O') cắt nhau tại A, B trong đó O' ∈ (O). Kẻ đường kính O'C của đường tròn (O). Chọn khẳng định sai?

Xem đáp án » 14/01/2025 28

Câu 5:

Cho hai đường tròn (O; R) và (O'; r) ở ngoài nhau. Gọi MN là tiếp tuyến chung ngoài, EF là tiếp tuyến chung trong (M và E thuộc (O), N và F thuộc (O'). Tính bán kính của đường tròn (O') khi OO' = 13 cm, MN = 12 cm và EF = 5 cm.

Xem đáp án » 14/01/2025 26

Câu 6:

Cho đoạn OO' và điểm A nằm trên đoạn OO' sao cho OA = 2O'A. Đường tròn (O) bán kính OA và đường tròn (O') bán kính O'A. Dây AD của đường tròn lớn cắt đường tròn nhỏ tại C. Khi đó:

Xem đáp án » 14/01/2025 24

Bình luận


Bình luận